Assignment #4

Due on Friday September 19, 2008

Read Chapter 2 on *Vector Algebra*, pp. 29–49, in Bressoud.

Do the following problems

1. Let u_1, u_2, \ldots, u_n be unit vectors in \mathbb{R}^n which are mutually orthogonal; that is,

$$u_i \cdot u_j = 0$$
 for $i \neq j$.

Prove that the set $\{u_1, u_2, \ldots, u_n\}$ is a basis for \mathbb{R}^n .

2. In problem 3 of Assignment #3 you were asked to show that the map $T_w \colon \mathbb{R}^n \to \mathbb{R}$ given by

 $T_w(v) = w \cdot v$ for every $v \in \mathbb{R}^n$

is an element of the dual of \mathbb{R}^n , denoted by $(\mathbb{R}^n)^*$; i.e., T_w is a linear, real valued function.

Prove that every linear transformation $T : \mathbb{R}^n \to \mathbb{R}$ must be of the form of T_w ; that is, for every $T \in (\mathbb{R}^n)^*$ there exists $w \in \mathbb{R}^n$ such that

$$T(v) = w \cdot v$$
 for every $v \in \mathbb{R}^n$.

(*Hint*: See where T takes the standard basis $\{e_1, e_2, \ldots, e_n\}$ in \mathbb{R}^n .)

- 3. Exercises 22 and 23 on page 51 in the text.
- 4. In this problem and the next, we derive the vector identity

$$u \times (v \times w) = (u \cdot w)v - (u \cdot v)w$$

for any vectors u, v and w in \mathbb{R}^3 .

(a) Argue that $u \times (v \times w)$ lies in the span of v and w. Consequently, there exist scalars t and s such that

$$u \times (v \times w) = tv + sw$$

(b) Show that $(u \cdot v)t + (u \cdot w)s = 0$.

Math 107. Rumbos

- 5. Let u, v and w be as in the previous problem.
 - (a) Use the results of the previous problem to conclude that there exists a scalar r such that

$$u \times (v \times w) = r[(u \cdot w)v - (u \cdot v)w].$$

(b) By considering some simple examples, deduce that r = 1 in the previous identity