## Assignment \#4

Due on Friday September 19, 2008
Read Chapter 2 on Vector Algebra, pp. 29-49, in Bressoud.
Do the following problems

1. Let $u_{1}, u_{2}, \ldots, u_{n}$ be unit vectors in $\mathbb{R}^{n}$ which are mutually orthogonal; that is,

$$
u_{i} \cdot u_{j}=0 \quad \text { for } \quad i \neq j
$$

Prove that the set $\left\{u_{1}, u_{2}, \ldots, u_{n}\right\}$ is a basis for $\mathbb{R}^{n}$.
2. In problem 3 of Assignment $\# 3$ you were asked to show that the map $T_{w}: \mathbb{R}^{n} \rightarrow$ $\mathbb{R}$ given by

$$
T_{w}(v)=w \cdot v \quad \text { for every } \quad v \in \mathbb{R}^{n}
$$

is an element of the dual of $\mathbb{R}^{n}$, denoted by $\left(\mathbb{R}^{n}\right)^{*}$; i.e., $T_{w}$ is a linear, real valued function.

Prove that every linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}$ must be of the form of $T_{w}$; that is, for every $T \in\left(\mathbb{R}^{n}\right)^{*}$ there exists $w \in \mathbb{R}^{n}$ such that

$$
T(v)=w \cdot v \quad \text { for every } \quad v \in \mathbb{R}^{n}
$$

(Hint: See where $T$ takes the standard basis $\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ in $\mathbb{R}^{n}$.)
3. Exercises 22 and 23 on page 51 in the text.
4. In this problem and the next, we derive the vector identity

$$
u \times(v \times w)=(u \cdot w) v-(u \cdot v) w
$$

for any vectors $u, v$ and $w$ in $\mathbb{R}^{3}$.
(a) Argue that $u \times(v \times w)$ lies in the span of $v$ and $w$. Consequently, there exist scalars $t$ and $s$ such that

$$
u \times(v \times w)=t v+s w
$$

(b) Show that $(u \cdot v) t+(u \cdot w) s=0$.
5. Let $u, v$ and $w$ be as in the previous problem.
(a) Use the results of the previous problem to conclude that there exists a scalar $r$ such that

$$
u \times(v \times w)=r[(u \cdot w) v-(u \cdot v) w]
$$

(b) By considering some simple examples, deduce that $r=1$ in the previous identity

