Exam 1 (Part I)

Wednesday, October 15, 2008
Name: \qquad
This is a closed book exam. Show all significant work and justify all your answers. Use your own paper and/or the paper provided by the instructor. You have 50 minutes to work on the following 3 problems. Relax.

1. The points $P(1,0,0), Q(0,4,0)$ and $R(0,0,7)$ determine a unique plane in three dimensional Euclidean space, \mathbb{R}^{3}.
(a) Give the equation of the plane.
(b) Find the (shortest) distance from the plane to the origin in \mathbb{R}^{3} and give the coordinates of the point on the plane which is the closest to the origin.
2. Let D denote an open subset of the $x y$-plane, \mathbb{R}^{2}, and let $f: D \rightarrow \mathbb{R}$ be a scalar filed defined on D.
(a) State precisely what it means for f to be continuous at $\left(x_{o}, y_{o}\right) \in D$.
(b) Let $f(x, y)=x y$ for all $(x, y) \in \mathbb{R}^{2}$. Use the inequality

$$
a b \leqslant \frac{1}{2}\left(a^{2}+b^{2}\right) \text { for all nonnegative real numbers } a, b,
$$

and the Squeeze Theorem to prove that f is continuous at the origin $(0,0)$.
3. Let U denote an open subset of \mathbb{R}^{n}, and let $F: U \rightarrow \mathbb{R}^{m}$ be a vector field on U.
(a) State precisely what it means for F to be differentiable at $u \in U$.
(b) Suppose that a vector field $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is a linear map. Prove that F is differentiable at every $u \in U$, and compute its derivative map

$$
D F(u): \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}
$$

at u, for all $u \in \mathbb{R}^{n}$.

