Exam 1 (Part II)

Due on Friday, October 17, 2008

Name: _____

This is a closed book exam. Show all significant work and justify all your answers.

4. Let $g: \mathbb{R} \to \mathbb{R}$ be a differentiable, real-valued function of a single variable with continuous derivative g'(r) for all $r \in \mathbb{R}$. Define scalar field $f: \mathbb{R}^3 \to \mathbb{R}$ by

$$f(x,y,z) = g(\sqrt{x^2 + y^2 + z^2}) \quad \text{for all } (x,y,z) \in \mathbb{R}^3$$

- (a) Show that f is differentiable for all (x, y, z) in ℝ³ except possibly at the origin (0,0,0).
 Suggestion: Compute the partial derivatives of f and argue that they are continuous except possibly at the origin.
- (b) Compute the gradient of f in terms of $r = \sqrt{x^2 + y^2 + z^2}$, the derivative g'(r) of g, and the vector $\overrightarrow{\mathbf{r}} = x\hat{i} + y\hat{j} + z\hat{k}$.
- 5. Let $I \subseteq \mathbb{R}$ be an open interval and $\sigma: I \to \mathbb{R}^n$ a differentiable path.
 - (a) Define $g(t) = \|\sigma(t)\|^2$ for all $t \in I$. Show that g is differentiable and compute g'(t) for all $t \in I$.
 - (b) Suppose that $\|\sigma(t)\| = c$, a constant, for all $t \in I$. Show that $\sigma(t)$ and $\sigma'(t)$ are orthogonal (or perpendicular) to each other for all $t \in I$.