Review Problems for Exam 1

1. Compute the (shortest) distance from the point $P(4,0,-7)$ in \mathbb{R}^{3} to the plane given by

$$
4 x-y-3 z=12
$$

2. Compute the (shortest) distance from the point $P(4,0,-7)$ in \mathbb{R}^{3} to the line given by the parametric equations

$$
\left\{\begin{array}{l}
x=-1+4 t \\
y=-7 t \\
z=2-t
\end{array}\right.
$$

3. Compute the area of the triangle whose vertices in \mathbb{R}^{3} are the points $(1,1,0)$, $(2,0,1)$ and $(0,3,1)$
4. Let v and w be two vectors in \mathbb{R}^{3}, and let λ be a scalar. Show that the area of the parallelogram determined by the vectors v and $w+\lambda v$ is the same as that determined by v and w.
5. Let \widehat{u} denote a unit vector in \mathbb{R}^{n} and $P_{\widehat{u}}(v)$ denote the orthogonal projection of v along the direction of \widehat{u} for any vector $v \in \mathbb{R}^{n}$. Use the Cauchy-Schwarz inequality to prove that the map

$$
v \mapsto P_{\widehat{u}}(v) \text { for all } v \in \mathbb{R}^{n}
$$

is a continuous map from \mathbb{R}^{n} to \mathbb{R}^{n}.
6. Define the scalar field $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ by

$$
f(x)=\frac{1}{2}\|x\|^{2} \quad \text { for all } \quad x \in \mathbb{R}^{n}
$$

Show that f is differentiable on \mathbb{R}^{n} and compute the linear map $D f(x): \mathbb{R}^{n} \rightarrow \mathbb{R}$ for all $x \in \mathbb{R}^{n}$. What is the gradient of f at x for all $x \in \mathbb{R}^{n}$?
7. A bug finds itself in a plate on the $x y$-plane whose temperature at any point (x, y) is given by the function

$$
T(x, y)=\frac{32}{2+x^{2}-2 x+y^{2}} \quad \text { for } \quad(x, y) \in \mathbb{R}^{2}
$$

Suppose the bug is at the origin and wishes to move in a direction at which the temperature is increasing the fastest. In which direction should the bug move? What is the rate of change of temperature in that direction?
8. Let $g:[0, \infty) \rightarrow \mathbb{R}$ be a differentiable, real-valued function of a single variable, and let $f(x, y)=g(r)$ where $r=\sqrt{x^{2}+y^{2}}$.
(a) Compute $\frac{\partial r}{\partial x}$ in terms of x and r, and $\frac{\partial r}{\partial y}$ in terms of y and r.
(b) Compute ∇f in terms of $g^{\prime}(r), r$ and the vector $\mathbf{r}=x \widehat{i}+y \widehat{j}$.
9. Let D denote an open region in \mathbb{R}^{2} and $f: D \rightarrow \mathbb{R}$ denote a scalar field whose second partial derivatives exist in D. Fix $(x, y) \in D$, and define the scalar map

$$
S(h, k)=f(x+h, y+k)-f(x+h, y)-f(x, y+k)+f(x, y)
$$

where $|h|$ and $|k|$ are sufficiently small.
(a) Apply the Mean Value Theorem to obtain an \bar{x} in the interval $(x, x+h)$, or $(x+h, x)$ (depending on whether h is positive or negative, respectively) such that

$$
S(h, k)=\left(\frac{\partial f}{\partial x}(\bar{x}, y+k)-\frac{\partial f}{\partial x}(\bar{x}, y)\right) h .
$$

(b) Apply the Mean Value Theorem to obtain a \bar{y} in the interval $(y, y+k)$, or $(y+k, y)$ (depending on whether k is positive or negative, respectively) such that

$$
S(h, k)=\frac{\partial^{2} f}{\partial y \partial x}(\bar{x}, \bar{y}) h k
$$

10. (Continuation of Problem 9.)
(c) The function f is said to be of class C^{2} if all its second partial derivatives are continuous on D.
Show that if f is of class C^{2}, then

$$
\lim _{(h, k) \rightarrow(0,0)} \frac{S(h, k)}{h k}=\frac{\partial^{2} f}{\partial y \partial x}(x, y)
$$

(d) Deduce that if f is of class C^{2}, then

$$
\frac{\partial^{2} f}{\partial y \partial x}(x, y)=\frac{\partial^{2} f}{\partial x \partial y}(x, y)
$$

that is, the mixed second partial derivatives are the same for C^{2} maps.

