Review Problems for Exam 1

1. Compute the (shortest) distance from the point P(4, 0, -7) in \mathbb{R}^3 to the plane given by

$$4x - y - 3z = 12$$

2. Compute the (shortest) distance from the point P(4, 0, -7) in \mathbb{R}^3 to the line given by the parametric equations

$$\begin{cases} x = -1 + 4t \\ y = -7t \\ z = 2 - t \end{cases}$$

- 3. Compute the area of the triangle whose vertices in \mathbb{R}^3 are the points (1,1,0), (2,0,1) and (0,3,1)
- 4. Let v and w be two vectors in \mathbb{R}^3 , and let λ be a scalar. Show that the area of the parallelogram determined by the vectors v and $w + \lambda v$ is the same as that determined by v and w.
- 5. Let \hat{u} denote a unit vector in \mathbb{R}^n and $P_{\hat{u}}(v)$ denote the orthogonal projection of v along the direction of \hat{u} for any vector $v \in \mathbb{R}^n$. Use the Cauchy–Schwarz inequality to prove that the map

$$v \mapsto P_{\widehat{u}}(v)$$
 for all $v \in \mathbb{R}^n$

is a continuous map from \mathbb{R}^n to \mathbb{R}^n .

6. Define the scalar field $f: \mathbb{R}^n \to \mathbb{R}$ by

$$f(x) = \frac{1}{2} ||x||^2$$
 for all $x \in \mathbb{R}^n$.

Show that f is differentiable on \mathbb{R}^n and compute the linear map $Df(x) \colon \mathbb{R}^n \to \mathbb{R}$ for all $x \in \mathbb{R}^n$. What is the gradient of f at x for all $x \in \mathbb{R}^n$?

7. A bug finds itself in a plate on the xy-plane whose temperature at any point (x, y) is given by the function

$$T(x,y) = \frac{32}{2+x^2-2x+y^2}$$
 for $(x,y) \in \mathbb{R}^2$.

Suppose the bug is at the origin and wishes to move in a direction at which the temperature is increasing the fastest. In which direction should the bug move? What is the rate of change of temperature in that direction?

Math 107. Rumbos

- 8. Let $g: [0, \infty) \to \mathbb{R}$ be a differentiable, real-valued function of a single variable, and let f(x, y) = g(r) where $r = \sqrt{x^2 + y^2}$.
 - (a) Compute $\frac{\partial r}{\partial x}$ in terms of x and r, and $\frac{\partial r}{\partial y}$ in terms of y and r.
 - (b) Compute ∇f in terms of g'(r), r and the vector $\mathbf{r} = x\hat{i} + y\hat{j}$.
- 9. Let D denote an open region in \mathbb{R}^2 and $f: D \to \mathbb{R}$ denote a scalar field whose second partial derivatives exist in D. Fix $(x, y) \in D$, and define the scalar map

$$S(h,k) = f(x+h, y+k) - f(x+h, y) - f(x, y+k) + f(x, y),$$

where |h| and |k| are sufficiently small.

(a) Apply the Mean Value Theorem to obtain an \overline{x} in the interval (x, x + h), or (x+h, x) (depending on whether h is positive or negative, respectively) such that

$$S(h,k) = \left(\frac{\partial f}{\partial x}(\overline{x}, y+k) - \frac{\partial f}{\partial x}(\overline{x}, y)\right)h.$$

(b) Apply the Mean Value Theorem to obtain a \overline{y} in the interval (y, y + k), or (y + k, y) (depending on whether k is positive or negative, respectively) such that

$$S(h,k) = \frac{\partial^2 f}{\partial y \partial x}(\overline{x}, \overline{y})hk.$$

- 10. (Continuation of Problem 9.)
 - (c) The function f is said to be of class C^2 if all its second partial derivatives are continuous on D. Show that if f is of class C^2 , then

$$\lim_{(h,k)\to(0,0)}\frac{S(h,k)}{hk} = \frac{\partial^2 f}{\partial y \partial x}(x,y).$$

(d) Deduce that if f is of class C^2 , then

$$\frac{\partial^2 f}{\partial y \partial x}(x,y) = \frac{\partial^2 f}{\partial x \partial y}(x,y);$$

that is, the *mixed* second partial derivatives are the same for C^2 maps.

Fall 2008 2