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Review Problems for Exam 1

1. Compute the (shortest) distance from the point P (4, 0,−7) in R3 to the plane
given by

4x− y − 3z = 12.

2. Compute the (shortest) distance from the point P (4, 0,−7) in R3 to the line
given by the parametric equations

x = −1 + 4t
y = −7t
z = 2− t

3. Compute the area of the triangle whose vertices in R3 are the points (1, 1, 0),
(2, 0, 1) and (0, 3, 1)

4. Let v and w be two vectors in R3, and let λ be a scalar. Show that the area of
the parallelogram determined by the vectors v and w + λv is the same as that
determined by v and w.

5. Let û denote a unit vector in Rn and Pû(v) denote the orthogonal projection
of v along the direction of û for any vector v ∈ Rn. Use the Cauchy–Schwarz
inequality to prove that the map

v 7→ Pû(v) for all v ∈ Rn

is a continuous map from Rn to Rn.

6. Define the scalar field f : Rn → R by

f(x) =
1

2
‖x‖2 for all x ∈ Rn.

Show that f is differentiable on Rn and compute the linear map Df(x) : Rn → R
for all x ∈ Rn. What is the gradient of f at x for all x ∈ Rn?

7. A bug finds itself in a plate on the xy–plane whose temperature at any point
(x, y) is given by the function

T (x, y) =
32

2 + x2 − 2x + y2
for (x, y) ∈ R2.

Suppose the bug is at the origin and wishes to move in a direction at which the
temperature is increasing the fastest. In which direction should the bug move?
What is the rate of change of temperature in that direction?
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8. Let g : [0,∞) → R be a differentiable, real–valued function of a single variable,
and let f(x, y) = g(r) where r =

√
x2 + y2.

(a) Compute
∂r

∂x
in terms of x and r, and

∂r

∂y
in terms of y and r.

(b) Compute ∇f in terms of g′(r), r and the vector r = x̂i + yĵ.

9. Let D denote an open region in R2 and f : D → R denote a scalar field whose
second partial derivatives exist in D. Fix (x, y) ∈ D, and define the scalar map

S(h, k) = f(x + h, y + k)− f(x + h, y)− f(x, y + k) + f(x, y),

where |h| and |k| are sufficiently small.

(a) Apply the Mean Value Theorem to obtain an x in the interval (x, x + h),
or (x+h, x) (depending on whether h is positive or negative, respectively)
such that

S(h, k) =

(
∂f

∂x
(x, y + k)− ∂f

∂x
(x, y)

)
h.

(b) Apply the Mean Value Theorem to obtain a y in the interval (y, y + k),
or (y + k, y) (depending on whether k is positive or negative, respectively)
such that

S(h, k) =
∂2f

∂y∂x
(x, y)hk.

10. (Continuation of Problem 9.)

(c) The function f is said to be of class C2 if all its second partial derivatives
are continuous on D.

Show that if f is of class C2, then

lim
(h,k)→(0,0)

S(h, k)

hk
=

∂2f

∂y∂x
(x, y).

(d) Deduce that if f is of class C2, then

∂2f

∂y∂x
(x, y) =

∂2f

∂x∂y
(x, y);

that is, the mixed second partial derivatives are the same for C2 maps.


