
Math 107. Rumbos Fall 2008 1

Review Problems for Exam 1

1. Compute the (shortest) distance from the point P (4, 0,−7) in R3 to the plane
given by

4x− y − 3z = 12.

Solution: The point Po(3, 0, 0) is in the plane. Let w =
−−→
PoP = 1

0
−7

 .

The vector n =

 4
−1
−3

 is orthogonal to the plane. To find the

shortest distance, d, from P to the plane, we compute the norm of
the orthogonal projection of w onto n; that is,

d = ‖Proj
n̂
(w)‖,

where

n̂ =
1√
26

 4
−1
−3

 ,

a unit vector in the direction of n, and

Proj
n̂
(w) = (w · n̂)n̂.

It then follows that
d = |w · n̂|,

where w · n̂ =
1√
26

(4 + 21) =
25√
26

. Hence, d =
25
√

26

26
≈ 4.9. �

2. Compute the (shortest) distance from the point P (4, 0,−7) in R3 to the line
given by the parametric equations

x = −1 + 4t
y = −7t
z = 2− t
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Solution: The point Po(−1, 0, 2) is on the line. The vector v = 4
−7
−1

 gives the direction of the line. Put w =
−−→
PoP =

 5
0
−9

 . The

vectors v and w determine a parallelogram whose area is the norm of
v times the shortest distance, d, from P to the line determined by v
at Po. We then have that

areav, w = ‖v‖d,

from which we get that

d =
area{v, w}

‖v‖
.

On the other hand,

area{v, w} = ‖v × w‖,

where

v × w =

∣∣∣∣∣∣
î ĵ k̂
4 −7 −1
5 0 −9

∣∣∣∣∣∣ = 63̂i + 31ĵ − 35k̂.

Thus, ‖v × w‖ =
√

(63)2 + (31)2 + (35)2 =
√

6155 and therefore

d =

√
6155√
66

≈ 9.7.

�

3. Compute the area of the triangle whose vertices in R3 are the points (1, 1, 0),
(2, 0, 1) and (0, 3, 1)

Solution: Label the points Po(1, 1, 0), P1(2, 0, 1) and P2(0, 3, 1) and
define the vectors

v =
−−→
PoP1 =

 1
−1
1

 and w =
−−→
PoP2 =

−1
2
1

 .

The area of the triangle determined by the points Po, P1 and P2 is
then half of the area of the parallelogram determined by the vectors
v and w. Thus,

area(4PoP1P2) =
1

2
‖v × w‖,
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where

v × w =

∣∣∣∣∣∣
î ĵ k̂
1 −1 1
−1 2 1

∣∣∣∣∣∣ = −3̂i− 2ĵ + k̂.

Consequently, area(4PoP1P2) =
1

2

√
9 + 4 + 1 =

√
14

2
≈ 1.87.

�

4. Let v and w be two vectors in R3, and let λ be a scalar. Show that the area of
the parallelogram determined by the vectors v and w + λv is the same as that
determined by v and w.

Solution: The area of the parallelogram determined by v and w+λv
is

area{v, w + λv} = ‖v × (w + λv)‖,

where
v × (w + λv) = v × w + λv × v = v × w.

Consequently, area{v, w + λv} = ‖v × w‖ = area{v, w}. �

5. Let û denote a unit vector in Rn and Pû(v) denote the orthogonal projection
of v along the direction of û for any vector v ∈ Rn. Use the Cauchy–Schwarz
inequality to prove that the map

v 7→ Pû(v) for all v ∈ Rn

is a continuous map from Rn to Rn.

Solution: Pû(v) = (v · û)widehatu for all v ∈ Rn. Consequently, for
any w, v ∈ Rn,

Pû(w)− Pû(v) = (w · û)û− (v · û)û
= (w · û− v · û)û
= [(w − v) · û]û.

It then follows that

‖Pû(w)− Pû(v)‖ = |(w − v) · û|,

since ‖û‖ = 1. Hence, by the Cauchy–Schwarz inequality,

‖Pû(w)− Pû(v)‖ 6 ‖w − v‖.
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Applying the Squeeze Theorem we then get that

lim
‖w−v‖→0

‖Pû(w)− Pû(v)‖ = 0,

which shows that Pû is continuous at every v ∈ V . �

6. Define the scalar field f : Rn → R by

f(x) =
1

2
‖x‖2 for all x ∈ Rn.

Show that f is differentiable on Rn and compute the linear map Df(x) : Rn → R
for all x ∈ Rn. What is the gradient of f at x for all x ∈ Rn?

Solution: Let u and w be any vector in Rn and consider

f(u + w) = 1
2
‖u + w‖2

= 1
2
(u + w) · (u + w)

= 1
2
u · u + u · w + 1

2
w · w

= 1
2
‖u‖2 + u · w + 1

2
‖w‖2.

Thus,

f(u + w)− f(u)− u · w =
1

2
‖w‖2.

Consequently,

|f(u + w)− f(u)− u · w|
‖w‖

=
1

2
‖w‖,

from which we get that

lim
‖w‖→0

|f(u + w)− f(u)− u · w|
‖w‖

= 0,

and therefore f is differentiable at u with derivative map Df(u) given
by

Df(u)w = u · w for all w ∈ Rn.

Hence, ∇f(u) = u for all u ∈ Rn. �

7. A bug finds itself in a plate on the xy–plane whose temperature at any point
(x, y) is given by the function

T (x, y) =
32

2 + x2 − 2x + y2
for (x, y) ∈ R2.

Suppose the bug is at the origin and wishes to move in a direction at which the
temperature is increasing the fastest. In which direction should the bug move?
What is the rate of change of temperature in that direction?
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Solution: The direction of maximum increase at (0, 0) is the direc-
tion of the gradient of T at that point, ∇T (0, 0), where

∇T (x, y) =
∂T

∂x
(x, y)̂i +

∂T

∂y
(x, y)ĵ.

Computing the partial derivatives we obtain that

∂T

∂x
(x, y) = −64

x− 1

(2 + x2 − 2x + y2)2
for (x, y) ∈ R2,

and

∂T

∂y
(x, y) = −64

y

(2 + x2 − 2x + y2)2
for (x, y) ∈ R2.

It then follows that
∇T (0, 0) = 16̂i.

Thus, the bug needs to move in the direction of the vector î for the
temperature to increase the fastest. The rated of change of tem-
perature in that direction is the magnitude of the gradient at (0, 0);
namely, 16.

�

8. Let g : [0,∞) → R be a differentiable, real–valued function of a single variable,
and let f(x, y) = g(r) where r =

√
x2 + y2.

(a) Compute
∂r

∂x
in terms of x and r, and

∂r

∂y
in terms of y and r.

Solution: Take the partial derivative of r2 = x2 + y2 on both
sides with respect to x to obtain

∂(r2)

∂x
= 2x.

Applying the chain rule on the left–hand side we get

2r
∂r

∂x
= 2x,

which leads to
∂r

∂x
=

x

r
.

Similarly,
∂r

∂y
=

y

r
. �
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(b) Compute ∇f in terms of g′(r), r and the vector r = x̂i + yĵ.

Solution: Take the partial derivative of f(x, y) = g(r) on both
sides with respect to x and apply the Chain Rule to obtain

∂f

∂x
= g′(r)

∂r

∂x
= g′(r)

x

r
.

Similarly,
∂f

∂y
= g′(r)

y

r
.

It then follows that

∇f =
∂f

∂x
î +

∂f

∂y
ĵ

= g′(r)
x

r
î + g′(r)

y

r
ĵ

=
g′(r)

r
(x̂i + yĵ)

=
g′(r)

r
r.

�

9. Let D denote an open region in R2 and f : D → R denote a scalar field whose
second partial derivatives exist in D. Fix (x, y) ∈ D, and define the scalar map

S(h, k) = f(x + h, y + k)− f(x + h, y)− f(x, y + k) + f(x, y),

where |h| and |k| are sufficiently small.

(a) Apply the Mean Value Theorem to obtain an x in the interval (x, x + h),
or (x+h, x) (depending on whether h is positive or negative, respectively)
such that

S(h, k) =

(
∂f

∂x
(x, y + k)− ∂f

∂x
(x, y)

)
h.

Solution: For fixed y, let g(x) = f(x, y + k) − f(x). It then
follows that g is differentiable with

g′(x) =
∂f

∂x
(x, y + k)− ∂f

∂x
(x, y).

Also,
S(h, k) = g(x + h)− g(x).
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By the Mean Value Theorem, there exists x between x and x+h,
such that

g(x + h)− g(x) = g′(x)h.

It then follows that

S(h, k) =

(
∂f

∂x
(x, y + k)− ∂f

∂x
(x, y)

)
h.

�

(b) Apply the Mean Value Theorem to obtain a y in the interval (y, y + k),
or (y + k, y) (depending on whether k is positive or negative, respectively)
such that

S(h, k) =
∂2f

∂y∂x
(x, y)hk.

Solution: Define g(y) =
∂f

∂x
(x, y). Then, g is differentiable with

g′(y) =
∂2f

∂y∂x
(x, y).

By the Mean Value Theorem, there exists y between y and y + k
such that

g(y + k)− g(y) = g′(y)k.

It then follows that

∂f

∂x
(x, y + k)− ∂f

∂x
(x, y) =

∂2f

∂y∂x
(x, y)k.

Consequently, from the previous part,

S(h, k) =

(
∂f

∂x
(x, y + k)− ∂f

∂x
(x, y)

)
h =

∂2f

∂y∂x
(x, y)kh,

which was to be shown. �

10. (Continuation of Problem 9.)

(c) The function f is said to be of class C2 if all its second partial derivatives
are continuous on D.

Show that if f is of class C2, then

lim
(h,k)→(0,0)

S(h, k)

hk
=

∂2f

∂y∂x
(x, y).
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Solution: From part (b) of Problem 9 we get that, for h 6= 0 and
k 6= 0,

S(h, k)

hk
=

∂2f

∂y∂x
(x, y),

where x is between x and x + h, and y is between y and y + k.
It then follows that x → x and y → y as (h, k) → (0, 0). Conse-
quently, since the second partial derivatives of f are continuous,

lim
(h,k)→(0,0)

S(h, k)

hk
=

∂2f

∂y∂x
(x, y).

�

(d) Deduce that if f is of class C2, then

∂2f

∂y∂x
(x, y) =

∂2f

∂x∂y
(x, y);

that is, the mixed second partial derivatives are the same for C2 maps.

Solution: An argument similar to that in Problem 9(a), with
g(y) = f(x + h, y)− f(x, y), leads to

S(h, k) =

(
∂f

∂y
(x + h, y)− ∂f

∂y
(x, y)

)
k,

for some y between y and y+k. Consequently, by the Mean Value
Theorem again, there exists x between x and x + h such that

S(h, k) =
∂2f

∂x∂y
(x, y)hk.

Hence, the argument used in the previous part yields that, if the
second partial derivatives of f are continuous,

lim
(h,k)→(0,0)

S(h, k)

hk
=

∂2f

∂x∂y
(x, y).

It then follows that, if f is of class C2,

∂2f

∂y∂x
(x, y) =

∂2f

∂x∂y
(x, y).

�


