Review Problems for Exam 1

1. Compute the (shortest) distance from the point $P(4,0,-7)$ in \mathbb{R}^{3} to the plane given by

$$
4 x-y-3 z=12
$$

Solution: The point $P_{o}(3,0,0)$ is in the plane. Let $w=\overrightarrow{P_{o} P}=$ $\left(\begin{array}{c}1 \\ 0 \\ -7\end{array}\right)$.
The vector $n=\left(\begin{array}{c}4 \\ -1 \\ -3\end{array}\right)$ is orthogonal to the plane. To find the shortest distance, d, from P to the plane, we compute the norm of the orthogonal projection of w onto n; that is,

$$
d=\left\|\operatorname{Proj}_{\hat{n}}(w)\right\|,
$$

where

$$
\widehat{n}=\frac{1}{\sqrt{26}}\left(\begin{array}{c}
4 \\
-1 \\
-3
\end{array}\right)
$$

a unit vector in the direction of n, and

$$
\operatorname{Proj}_{\widehat{n}}(w)=(w \cdot \widehat{n}) \widehat{n} .
$$

It then follows that

$$
d=|w \cdot \widehat{n}|
$$

where $w \cdot \widehat{n}=\frac{1}{\sqrt{26}}(4+21)=\frac{25}{\sqrt{26}}$. Hence, $d=\frac{25 \sqrt{26}}{26} \approx 4.9$.
2. Compute the (shortest) distance from the point $P(4,0,-7)$ in \mathbb{R}^{3} to the line given by the parametric equations

$$
\left\{\begin{array}{l}
x=-1+4 t \\
y=-7 t \\
z=2-t
\end{array}\right.
$$

Solution: The point $P_{o}(-1,0,2)$ is on the line. The vector $v=$ $\left(\begin{array}{c}4 \\ -7 \\ -1\end{array}\right)$ gives the direction of the line. Put $w=\overrightarrow{P_{o} P}=\left(\begin{array}{c}5 \\ 0 \\ -9\end{array}\right)$. The vectors v and w determine a parallelogram whose area is the norm of v times the shortest distance, d, from P to the line determined by v at P_{o}. We then have that

$$
\operatorname{area} v, w=\|v\| d
$$

from which we get that

$$
d=\frac{\operatorname{area}\{v, w\}}{\|v\|} .
$$

On the other hand,

$$
\operatorname{area}\{v, w\}=\|v \times w\|
$$

where

$$
v \times w=\left|\begin{array}{ccc}
\widehat{i} & \widehat{j} & \widehat{k} \\
4 & -7 & -1 \\
5 & 0 & -9
\end{array}\right|=63 \widehat{i}+31 \widehat{j}-35 \widehat{k}
$$

Thus, $\|v \times w\|=\sqrt{(63)^{2}+(31)^{2}+(35)^{2}}=\sqrt{6155}$ and therefore

$$
d=\frac{\sqrt{6155}}{\sqrt{66}} \approx 9.7
$$

3. Compute the area of the triangle whose vertices in \mathbb{R}^{3} are the points $(1,1,0)$, $(2,0,1)$ and $(0,3,1)$

Solution: Label the points $P_{o}(1,1,0), P_{1}(2,0,1)$ and $P_{2}(0,3,1)$ and define the vectors

$$
v=\overrightarrow{P_{o} P_{1}}=\left(\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right) \quad \text { and } \quad w=\overrightarrow{P_{o} P_{2}}=\left(\begin{array}{c}
-1 \\
2 \\
1
\end{array}\right) .
$$

The area of the triangle determined by the points P_{o}, P_{1} and P_{2} is then half of the area of the parallelogram determined by the vectors v and w. Thus,

$$
\operatorname{area}\left(\triangle P_{o} P_{1} P_{2}\right)=\frac{1}{2}\|v \times w\|
$$

where

$$
v \times w=\left|\begin{array}{ccc}
\widehat{i} & \widehat{j} & \widehat{k} \\
1 & -1 & 1 \\
-1 & 2 & 1
\end{array}\right|=-3 \widehat{i}-2 \widehat{j}+\widehat{k}
$$

Consequently, $\operatorname{area}\left(\triangle P_{o} P_{1} P_{2}\right)=\frac{1}{2} \sqrt{9+4+1}=\frac{\sqrt{14}}{2} \approx 1.87$.
4. Let v and w be two vectors in \mathbb{R}^{3}, and let λ be a scalar. Show that the area of the parallelogram determined by the vectors v and $w+\lambda v$ is the same as that determined by v and w.

Solution: The area of the parallelogram determined by v and $w+\lambda v$ is

$$
\operatorname{area}\{v, w+\lambda v\}=\|v \times(w+\lambda v)\|,
$$

where

$$
v \times(w+\lambda v)=v \times w+\lambda v \times v=v \times w .
$$

Consequently, area $\{v, w+\lambda v\}=\|v \times w\|=\operatorname{area}\{v, w\}$.
5. Let \widehat{u} denote a unit vector in \mathbb{R}^{n} and $P_{\widehat{u}}(v)$ denote the orthogonal projection of v along the direction of \widehat{u} for any vector $v \in \mathbb{R}^{n}$. Use the Cauchy-Schwarz inequality to prove that the map

$$
v \mapsto P_{\widehat{u}}(v) \text { for all } v \in \mathbb{R}^{n}
$$

is a continuous map from \mathbb{R}^{n} to \mathbb{R}^{n}.
Solution: $P_{\widehat{u}}(v)=(v \cdot \widehat{u})$ widehatu for all $v \in \mathbb{R}^{n}$. Consequently, for any $w, v \in \mathbb{R}^{n}$,

$$
\begin{aligned}
P_{\widehat{u}}(w)-P_{\widehat{u}}(v) & =(w \cdot \widehat{u}) \widehat{u}-(v \cdot \widehat{u}) \widehat{u} \\
& =(w \cdot \widehat{u}-v \cdot \widehat{u}) \widehat{u} \\
& =[(w-v) \cdot \widehat{u}] \widehat{u} .
\end{aligned}
$$

It then follows that

$$
\left\|P_{\widehat{u}}(w)-P_{\widehat{u}}(v)\right\|=|(w-v) \cdot \widehat{u}|
$$

since $\|\widehat{u}\|=1$. Hence, by the Cauchy-Schwarz inequality,

$$
\left\|P_{\widehat{u}}(w)-P_{\widehat{u}}(v)\right\| \leqslant\|w-v\|
$$

Applying the Squeeze Theorem we then get that

$$
\lim _{\|w-v\| \rightarrow 0}\left\|P_{\widehat{u}}(w)-P_{\widehat{u}}(v)\right\|=0
$$

which shows that $P_{\widehat{u}}$ is continuous at every $v \in V$.
6. Define the scalar field $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ by

$$
f(x)=\frac{1}{2}\|x\|^{2} \quad \text { for all } x \in \mathbb{R}^{n}
$$

Show that f is differentiable on \mathbb{R}^{n} and compute the linear map $D f(x): \mathbb{R}^{n} \rightarrow \mathbb{R}$ for all $x \in \mathbb{R}^{n}$. What is the gradient of f at x for all $x \in \mathbb{R}^{n}$?

Solution: Let u and w be any vector in \mathbb{R}^{n} and consider

$$
\begin{aligned}
f(u+w) & =\frac{1}{2}\|u+w\|^{2} \\
& =\frac{1}{2}(u+w) \cdot(u+w) \\
& =\frac{1}{2} u \cdot u+u \cdot w+\frac{1}{2} w \cdot w \\
& =\frac{1}{2}\|u\|^{2}+u \cdot w+\frac{1}{2}\|w\|^{2}
\end{aligned}
$$

Thus,

$$
f(u+w)-f(u)-u \cdot w=\frac{1}{2}\|w\|^{2}
$$

Consequently,

$$
\frac{|f(u+w)-f(u)-u \cdot w|}{\|w\|}=\frac{1}{2}\|w\|
$$

from which we get that

$$
\lim _{\|w\| \rightarrow 0} \frac{|f(u+w)-f(u)-u \cdot w|}{\|w\|}=0
$$

and therefore f is differentiable at u with derivative map $D f(u)$ given by

$$
D f(u) w=u \cdot w \quad \text { for all } w \in \mathbb{R}^{n}
$$

Hence, $\nabla f(u)=u$ for all $u \in \mathbb{R}^{n}$.
7. A bug finds itself in a plate on the $x y$-plane whose temperature at any point (x, y) is given by the function

$$
T(x, y)=\frac{32}{2+x^{2}-2 x+y^{2}} \quad \text { for }(x, y) \in \mathbb{R}^{2}
$$

Suppose the bug is at the origin and wishes to move in a direction at which the temperature is increasing the fastest. In which direction should the bug move? What is the rate of change of temperature in that direction?

Solution: The direction of maximum increase at $(0,0)$ is the direction of the gradient of T at that point, $\nabla T(0,0)$, where

$$
\nabla T(x, y)=\frac{\partial T}{\partial x}(x, y) \widehat{i}+\frac{\partial T}{\partial y}(x, y) \widehat{j}
$$

Computing the partial derivatives we obtain that

$$
\frac{\partial T}{\partial x}(x, y)=-64 \frac{x-1}{\left(2+x^{2}-2 x+y^{2}\right)^{2}} \quad \text { for } \quad(x, y) \in \mathbb{R}^{2}
$$

and

$$
\frac{\partial T}{\partial y}(x, y)=-64 \frac{y}{\left(2+x^{2}-2 x+y^{2}\right)^{2}} \quad \text { for } \quad(x, y) \in \mathbb{R}^{2}
$$

It then follows that

$$
\nabla T(0,0)=16 \widehat{i}
$$

Thus, the bug needs to move in the direction of the vector \hat{i} for the temperature to increase the fastest. The rated of change of temperature in that direction is the magnitude of the gradient at $(0,0)$; namely, 16.
8. Let $g:[0, \infty) \rightarrow \mathbb{R}$ be a differentiable, real-valued function of a single variable, and let $f(x, y)=g(r)$ where $r=\sqrt{x^{2}+y^{2}}$.
(a) Compute $\frac{\partial r}{\partial x}$ in terms of x and r, and $\frac{\partial r}{\partial y}$ in terms of y and r.

Solution: Take the partial derivative of $r^{2}=x^{2}+y^{2}$ on both sides with respect to x to obtain

$$
\frac{\partial\left(r^{2}\right)}{\partial x}=2 x
$$

Applying the chain rule on the left-hand side we get

$$
2 r \frac{\partial r}{\partial x}=2 x
$$

which leads to

$$
\frac{\partial r}{\partial x}=\frac{x}{r}
$$

Similarly, $\frac{\partial r}{\partial y}=\frac{y}{r}$.
(b) Compute ∇f in terms of $g^{\prime}(r), r$ and the vector $\mathbf{r}=x \widehat{i}+y \widehat{j}$.

Solution: Take the partial derivative of $f(x, y)=g(r)$ on both sides with respect to x and apply the Chain Rule to obtain

$$
\frac{\partial f}{\partial x}=g^{\prime}(r) \frac{\partial r}{\partial x}=g^{\prime}(r) \frac{x}{r}
$$

Similarly, $\frac{\partial f}{\partial y}=g^{\prime}(r) \frac{y}{r}$.
It then follows that

$$
\begin{aligned}
\nabla f & =\frac{\partial f}{\partial x} \widehat{i}+\frac{\partial f}{\partial y} \widehat{j} \\
& =g^{\prime}(r) \frac{x}{r} \widehat{i}+g^{\prime}(r) \frac{y}{r} \widehat{j} \\
& =\frac{g^{\prime}(r)}{r}(\widehat{x}+y \widehat{j}) \\
& =\frac{g^{\prime}(r)}{r} \mathbf{r}
\end{aligned}
$$

9. Let D denote an open region in \mathbb{R}^{2} and $f: D \rightarrow \mathbb{R}$ denote a scalar field whose second partial derivatives exist in D. Fix $(x, y) \in D$, and define the scalar map

$$
S(h, k)=f(x+h, y+k)-f(x+h, y)-f(x, y+k)+f(x, y)
$$

where $|h|$ and $|k|$ are sufficiently small.
(a) Apply the Mean Value Theorem to obtain an \bar{x} in the interval $(x, x+h)$, or $(x+h, x)$ (depending on whether h is positive or negative, respectively) such that

$$
S(h, k)=\left(\frac{\partial f}{\partial x}(\bar{x}, y+k)-\frac{\partial f}{\partial x}(\bar{x}, y)\right) h .
$$

Solution: For fixed y, let $g(x)=f(x, y+k)-f(x)$. It then follows that g is differentiable with

$$
g^{\prime}(x)=\frac{\partial f}{\partial x}(x, y+k)-\frac{\partial f}{\partial x}(x, y) .
$$

Also,

$$
S(h, k)=g(x+h)-g(x)
$$

By the Mean Value Theorem, there exists \bar{x} between x and $x+h$, such that

$$
g(x+h)-g(x)=g^{\prime}(\bar{x}) h .
$$

It then follows that

$$
S(h, k)=\left(\frac{\partial f}{\partial x}(\bar{x}, y+k)-\frac{\partial f}{\partial x}(\bar{x}, y)\right) h .
$$

(b) Apply the Mean Value Theorem to obtain a \bar{y} in the interval $(y, y+k)$, or $(y+k, y)$ (depending on whether k is positive or negative, respectively) such that

$$
S(h, k)=\frac{\partial^{2} f}{\partial y \partial x}(\bar{x}, \bar{y}) h k
$$

Solution: Define $g(y)=\frac{\partial f}{\partial x}(\bar{x}, y)$. Then, g is differentiable with

$$
g^{\prime}(y)=\frac{\partial^{2} f}{\partial y \partial x}(\bar{x}, y)
$$

By the Mean Value Theorem, there exists \bar{y} between y and $y+k$ such that

$$
g(y+k)-g(y)=g^{\prime}(\bar{y}) k
$$

It then follows that

$$
\frac{\partial f}{\partial x}(\bar{x}, y+k)-\frac{\partial f}{\partial x}(\bar{x}, y)=\frac{\partial^{2} f}{\partial y \partial x}(\bar{x}, \bar{y}) k
$$

Consequently, from the previous part,

$$
S(h, k)=\left(\frac{\partial f}{\partial x}(\bar{x}, y+k)-\frac{\partial f}{\partial x}(\bar{x}, y)\right) h=\frac{\partial^{2} f}{\partial y \partial x}(\bar{x}, \bar{y}) k h
$$

which was to be shown.
10. (Continuation of Problem 9.)
(c) The function f is said to be of class C^{2} if all its second partial derivatives are continuous on D.
Show that if f is of class C^{2}, then

$$
\lim _{(h, k) \rightarrow(0,0)} \frac{S(h, k)}{h k}=\frac{\partial^{2} f}{\partial y \partial x}(x, y) .
$$

Solution: From part (b) of Problem 9 we get that, for $h \neq 0$ and $k \neq 0$,

$$
\frac{S(h, k)}{h k}=\frac{\partial^{2} f}{\partial y \partial x}(\bar{x}, \bar{y})
$$

where \bar{x} is between x and $x+h$, and \bar{y} is between y and $y+k$. It then follows that $\bar{x} \rightarrow x$ and $\bar{y} \rightarrow y$ as $(h, k) \rightarrow(0,0)$. Consequently, since the second partial derivatives of f are continuous,

$$
\lim _{(h, k) \rightarrow(0,0)} \frac{S(h, k)}{h k}=\frac{\partial^{2} f}{\partial y \partial x}(x, y) .
$$

(d) Deduce that if f is of class C^{2}, then

$$
\frac{\partial^{2} f}{\partial y \partial x}(x, y)=\frac{\partial^{2} f}{\partial x \partial y}(x, y)
$$

that is, the mixed second partial derivatives are the same for C^{2} maps.
Solution: An argument similar to that in Problem 9(a), with $g(y)=f(x+h, y)-f(x, y)$, leads to

$$
S(h, k)=\left(\frac{\partial f}{\partial y}(x+h, \bar{y})-\frac{\partial f}{\partial y}(x, \bar{y})\right) k
$$

for some \bar{y} between y and $y+k$. Consequently, by the Mean Value Theorem again, there exists \bar{x} between x and $x+h$ such that

$$
S(h, k)=\frac{\partial^{2} f}{\partial x \partial y}(\bar{x}, \bar{y}) h k .
$$

Hence, the argument used in the previous part yields that, if the second partial derivatives of f are continuous,

$$
\lim _{(h, k) \rightarrow(0,0)} \frac{S(h, k)}{h k}=\frac{\partial^{2} f}{\partial x \partial y}(x, y)
$$

It then follows that, if f is of class C^{2},

$$
\frac{\partial^{2} f}{\partial y \partial x}(x, y)=\frac{\partial^{2} f}{\partial x \partial y}(x, y)
$$

