1

Information Sheet for Exam 2

1. Jacobian Matrix of a C^1 Function

The Jacobian matrix of a function $\Phi \colon D \to \mathbb{R}^2$ defined on an open subset, D, of \mathbb{R}^2 by

$$\Phi\begin{pmatrix} u \\ v \end{pmatrix} = \begin{pmatrix} x(u,v) \\ y(u,v) \end{pmatrix} \quad \text{for all} \quad \begin{pmatrix} u \\ v \end{pmatrix} \in D,$$

where x and y are C^1 scalar fields on D, is given by

$$D\Phi(u,v) = \begin{pmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{pmatrix},$$

where the partial derivatives are evaluated at (u, v) in D.

2. Jacobian Determinant of a C^1 Function

The Jacobian determinant, or simply the Jacobian, of a C^1 function $\Phi \colon D \to \mathbb{R}^2$ is the determinant of the Jacobian matrix $D\Phi(u,v)$. We denote it by $\frac{\partial(x,y)}{\partial(u,v)}$.

3. Tangent Line Approximation to a C^1 Path

The tangent line approximation to a C^1 path $\sigma: [a,b] \to \mathbb{R}^n$ at $\sigma(t_o)$, for some $t_o \in (a,b)$, is the straight line given by

$$L(t) = \sigma(t_o) + (t - t_o)\sigma'(t_o)$$
 for all $t \in \mathbb{R}$

4. Arc Length

Let $\sigma: [a, b] \to \mathbb{R}^n$ be a C^1 parametrization of a curve C. The arc length of C is given by

$$\ell(C) = \int_a^b \|\sigma'(t)\| \, \mathrm{d}t.$$

5. Path Integral

Let $f: U \to \mathbb{R}$ be a continuous scalar field defined on some open subset of \mathbb{R}^n . Suppose there is a C^1 curve C contained in U. Then the integral of f over C is given by

$$\int_C f \, ds = \int_a^b f(\sigma(t)) \|\sigma'(t)\| \, dt,$$

for any C^1 parametrization, $\sigma \colon [a,b] \to \mathbb{R}^n$ of the curve C.

6. Line Integral

Let $F: U \to \mathbb{R}^n$ denote a continuous vector field defined on some open subset, U, of \mathbb{R}^n . Suppose there is a C^1 curve, C, contained in U. Then, the line integral of F over C is given by

$$\int_C F \cdot T \, ds = \int_a^b F(\sigma(t)) \cdot \sigma'(t) \, dt,$$

for any C^1 parametrization, $\sigma: [a, b] \to \mathbb{R}^n$, of the curve C. Here T denotes the tangent unit vector to the curve, and it is given by

$$T(t) = \frac{1}{\|\sigma'(t)\|} \sigma'(t)$$
 for all $t \in (a, b)$.

If $F = P \hat{i} + Q \hat{j} + R \hat{k}$, where P Q and R are C^1 scalar fields defined on U,

$$\int_C F \cdot T \, \mathrm{d}s = \int_C P \, \mathrm{d}x + Q \, \mathrm{d}y + R \, \mathrm{d}z.$$

The expression P dx + Q dy + R dz is called a differential 1-form.

7. Flux

Let $F = P \hat{i} + Q \hat{j}$, where P and Q are continuous scalar fields defined on an open subset, U, of \mathbb{R}^2 . Suppose there is a C^1 simple closed curve C contained in U. Then the flux of F across C is given by

$$\int_C F \cdot \widehat{n} \, \mathrm{d}s = \int_C P \mathrm{d}y - Q \mathrm{d}x.$$

Here, \widehat{n} denotes a unit vector perpendicular to C and pointing to the outside of C.

8. Green's Theorem.

The Fundamental Theorem of Calculus,

$$\int_{M} d\omega = \int_{\partial M} \omega,$$

takes the following form in two-dimensional Euclidean space:

Let R denote a region in \mathbb{R}^2 bounded by a simple closed curve, $\partial \mathbb{R}$, made up of a finite number of C^1 paths traversed in the counterclockwise sense. Let P

and Q denote two C^1 scalar fields defined on some open set containing R and its boundary, ∂R . Then,

$$\int_{R} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy = \int_{\partial R} P dx + Q dy.$$

9. The Change of Variables Theorem

Let R denote a region in the xy-plane and D a region in the uv-plane. Suppose that there is a change or coordinates function $\Phi \colon \mathbb{R}^2 \to \mathbb{R}^2$ that maps D onto R. Then, for any continuous function, f, defined on R,

$$\int_{R} f(x,y) \, dxdy = \int_{D} f(\Phi(u,v)) \left| \frac{\partial(x,y)}{\partial(u,v)} \right| \, dudv,$$

where $\frac{\partial(x,y)}{\partial(u,v)}$ denotes the determinant of the Jacobian matrix of Φ .

10. Polar Coordinates

Suppose the change of variable

$$\begin{cases} x = r\cos\theta \\ y = r\sin\theta \end{cases}$$

maps the region D in the $r\theta$ -plane onto the region R in the xy-plane in a one-to-one fashion. Then, for any continuous function, f, defined on R,

$$\int_{B} f(x,y) \, dxdy = \int_{D} f(r\cos\theta, r\sin\theta) \, r \, drd\theta.$$