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Review Problems for Exam 2

1. Consider a wheel of radius a which is rolling on the z—axis in the zy—plane.
Suppose that the center of the wheel moves in the positive z—direction and a
constant speed v,. Let P denote a fixed point on the rim of the wheel.

(a) Give a path o(t) = (z(t),y(t)) giving the position of the P at any time ¢,
if P is initially at the point (0, 2a).
Solution: Let 0(t) denote the angle that the ray from the center
Y

(0.0) ’
Figure 1: Circle

of the circle to the point (z(t),y(t)) makes with a vertical line
through the center. Then, v,t = af(t); so that 6(t) = Yot and
a
z(t) = vot + asin(0(t))

and
y(t) = a+acos(6(t))

O

(b) Compute the velocity of P at any time ¢. When is the velocity of P
horizontal? What is the speed of P at those times?

Solution: The velocity vector is
o' (1) = (2'(), 5/ (1)) = (v, + ab/ (1) cos(B(1)), —af(£) sin(6(1)))

where

We then have that

a'(t) = (v, + v, cos(0(t)), —v, sin(6(t)))
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The velocity of P is horizontal when
sin(0(t)) = 0,

or

0(t) = nm,
where n is an integer; and when
cos(0(t)) # —1.
We then get that the velocity of P is horizontal when
0(t) = 2km

where k is an integer.
The speed at the points where the velocity if horizontal is then
equal to 2v,. O

2. Let f: R — R denote a twice—differentiable real valued function and define
u(z,t) = f(x —ct) forall (z,t) € R?

where ¢ is a real constant.

Show that
Pu 0%
oz~ C ar2
Solution: Use the Chain Rule to compute
au , a /
En —f(x—ct)-a(a:—ct)——cf(x—ct),
and 52 5
8_157; =c f"(x —ct)- a(x —ct)=c* f'(x — ct).
Similarly,
0*u "
9 [ —ct)
since g(x —ct) =1. Hence
ox - ’
0%u ” 0*u
WZCQ f (x—ct):gﬁ
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3. Let f: R — R denote a twice—differentiable real valued function and define
u(z,y) = f(r) where r=+/22+92 forall (z,y) € R

Express the Laplacian of u, Au, i.e., the divergence of the gradient of u, in
terms of f', f” and r.

Solution: First note that r?> = 22 + 2, from which we get that

or
2r— =2

T@x x,
or

o _z

or
Similarly,

o _y

oy

Next, use the Chain Rule to compute

ou or x
a—xzf/('f’)'a—xzf/("’);

Differentiating with respect to x again, using the Chain, Product and
Quotient rules,

P2 (10)

0x? Ox r
_ 0,2 (£
r ox r
_ L0, R S
r r
f, 2 1 2 /
- IO Ty - T
Similarly, ) ) ,
a f/ " !
= T L - L)
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Hence
o= T o
= oS T iy T g
= O - S
= 2Ty L

= )+ 1),

4. Let f(x,y) =4z — Ty for all (z,y) € R? and g(z,y) = 222 + ¢*.

(a) Sketch the graph of the set C'= g7 '(1) = {(z,y) € R? | g(z,y) = 1}.

(b) Show that at the points where f has an extremum on C, the gradient of
f is parallel to the gradient of g.

Solution: The curve C is given by the set of points (z,y) in R?

such that
20 +y? =1,
or )
x 2
— =1.
12 Y
That is, C is an ellipse with minor vertices £1/ V2 and major
vertices +1. O

The sketch is shown in Figure 2.
(c) Find largest and the smallest value of f on C.

Solution: Let o(t) be a parametrization of the ellipse. We want
to find a value of ¢ for which the function f(o(t)) is the largest.
Thus, we first look for critical points of this function. By the

Chain Rule,
d

o U@(0)) =V [(a(t)) - o'(2).
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Figure 2: Sketch of ellipse

Thus, t is a critical point if the tangent vector o’(t) is perpendic-
ular to V f(z,y) = 4i — 7j.
On the other hand, from

g(o(t)) =1 forallt
we get that
Vy(a(t)) - o'(t) =0
so that o’ (t) is also perpendicular to Vg(z,y) = 4zi+2y;. Hence,

Vf and Vg must be parallel at a critical points; that is, there
must be a constant A # 0 such that

Vy(z,y) = AV f(z,y)

or R R R R
Aot + 2y) =4\ — TAj.
We then get that
4o = 4\

and
2y = —TA\.

In other words, a critical point (z,y) must lie in the line

2y = —Tx.
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Next, we find the intersection of this line with the ellipse.
Solving for y and substituting into the equation of the ellipse we

get that
2t (25) 1
: =
o 49
20° + —a2? =1
x° + 1 T
o 57
2
—xr =1
17
or A
2 [ g—
T
from which we get that
2
r=+——.
V57

We therefore get the critical points

() = (k)

Evaluating f at each of these points we find that

2 7 8 49
2 VY
e —va) = v v
and 2 7 8 49
S22 TN Y e
vevm) = v v
2 7
Thus, f is the largest at (| —, ——— and the smallest at
d st ot ()
2 7
———,—— . The largest value of f on C' is then V57 , and
(v 7) ; I
its smallest value on C' is —v/57. L]

5. Let C' = {(x,y) e R? | 22 +y* = 1,y > 0}; i.e., C is the upper unit semi-circle.
C' can be parametrized by

o(t)=(r,v1—-72) for —1<7<1.
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(a) Compute s(t), the arclength along C' from (—1,0) to the point o(t), for

—-1<t< 1.
Solution: Compute o’'(7) = (1, —;) forallT € (—1,1).
V1—r12
Then,
T2 1

/
lo" @l T ioe

It then follows that

s(t):/_tl\/%dT for —1<t< 1.
O
(b) Compute s'(t) for —1 < t < t and sketch the graph of s as function of t.
Solution: By the Fundamental Theorem of Calculus,
s'(t) = \/117# for —1<t<1.
Note then that s'(t) > 0 for all t € (—1,1) and therefore s is
strictly increasing on (—1,1).

Next, compute the derivative of s'(t) to get the second derivative
of s(t):

s”(t):(l_ﬁ for —1<t<1.

It then follows that s”(t) < 0 for —1 < ¢ < 0 and s”"(t) > 0 for
0 <t < 1. Thus, the graph of s = s(t) is concave down on (—1,0)
and concave up on (0, 1).

Finally, observe that s(—1) = 0, s(0) = 7/2 (the arc-length along
a quarter of the unit circle), and s(1) = 7 (the arc—length along
a semi—circle of unit radius). We can then sketch the graph of
s = s(t) as shown in Figure 3. O

(¢) Show that cos(m — s(t)) =t for all =1 < ¢ < 1, and deduce that
sin(s(t)) =v1—t> forall —1<t<1.

Solution: Figure 4 shows the upper unit semicircle and a point
o(t) on it. Putting 6(t) = m — s(t), then (¢) is the angle, in radi-
ans, that the ray from the origin to o(t) makes with the positive
x—axis. It then follows that

cos(O(t)) =t
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Figure 3: Sketch of s = s(¢)

and

Since

sin(0(t)) = sin(m — s(t)) = sin(s(t),

the result follows.

sin(0(t)) = v1 — t2.

Figure 4: Sketch of Semi-—circle

Fall 2008

O

8

6. Let R denote the open unit disc in R?; that is, R = {(z,y) € R? | 22 +¢* < 1}.
Evaluate the integral

/ In(2? + y*) dady
R
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by first evaluating the integral
/ In(x? + 3?) dady,
Ae

where A, is the annulus {(x,y) € R? | &2 < 2? +y? < 1}, for 0 < e < 1, and
then computing the limit at € goes to 0.

Solution: First, evaluate the integral on the annulus pictured in
Figure 5.

N
\/8 x

Figure 5: Sketch of A,

Using polar coordinates we obtain

2m 1
/ In(2? +5?) dedy = / / In(r?) r drdd
Ac 0 £
1

= 47r/ In(r) r dr

Integrating by parts, with « = In(r) and dv = r dr, we then get that

- .
/ ln(gc2 + y2) dedy = 4rw _g_ln(g) _/ r dr}
A 2 . 2

= 4w |— — —In(e) — =

As ¢ — 0, we can show, using L.’Hospital’s rule, that
2

. €
ll_r)% 5 In(e) = 0.
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It then follows that

/ In(2* +y?) dedy = lim [ In(z”+y?) dedy = —7.
R E— A.

L]
7. Let A denote the annulus {(z,y) € R?* | 1 < 2% + y*> < 4}, and evaluate
1
—— dady.
/Ax2+y2 ray

Solution: Proceeding as in the previous problem, we obtain that

1 27 2 1
AT 0 1

see Figure 6.

<

1N

/1 2 @

Figure 6: Sketch of A

Then,
1 !
———dady = 27 [ —dr=27In(2).
A 1

x? +y? r
OJ
8. Let R={(x,y) € R* | 0 < z < y,2? + y* < 1}, and evaluate / 2? dady.
R

Solution: A sketch of the region R is shown in Figure
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Figure 7: Sketch of region R in Problem 8

We may use polar coordinates to do this problem as follows

/ z? dzdy
R

4

w/2 pl
/ r? cos*(#) r drdf
w/4 JO

w/2 1
/ cos?(6) / r3 drdf
w/4 0

1 w/2
- / cos?(0) df

/4

1 [™?1
Z/ L1 + cos(20)) a0,

/a2

where we have used the double angle formula for cos? . We then have

that

/ 2? dady
R

1 w/2
g/ (1 + cos(26)) do

/4
/2
1 1
— |0 + = sin(260)
8 2 /A
1 /m _ 1
8\4 2
1
3—2 (’/T — 2)

11
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9. Let R denote the region in the xy-plane bounded by the lines x +y = 1,

r+y=4,x—y=—1and x —y = 1. Evaluate /(as +y)e” Y dady.
R

Solution: The region for this problem is sketched in Figure 8.

r+y=1

T—y=—

Figure 8: Sketch of Region R in Problem 9

Make the change of variables x +y = v and x —y = v. We then
obtain that

1,0
ZL'—QU, 21)
1
y = u=3v

We then obtain the change of coordinates map

o (") - /2 1/2 u
v)  \1/2 —1/2) \w
which maps the rectangle D = {(u,v) e R* |1 <u<4,-1<v <1}
to the region R. The change of variables formula then yields

/(m +y)e" Y dedy = / ue’ a(x,y)‘ dudwv,
R D

O(u,v)
ox,y) /2 1/2y 1
o(u,v) det (1/2 —1/2) 2

where
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Consequently,

1
/(x +y)e® Y daedy = —/ ue’ dudv
R 2Jp

1
:—//ue”dudv
2J)4N
1

1 24
= —/ e”u—‘ dv
2/, 2h

15 [

= — e’ dv
4
15

= Z(el —e)

O

10. Evaluate [ (x+y) dzdy where R is the rectangle in the xy—plane with vertices

(1,0), (4,3), (3,4) and (0, 1).

Solution: A sketch of the region R is shown in Figure 9.
We can make the change of variables

u = T+vy,
vo= Ty,
from which we get that
1 . 1
r = —u-+-=v
2 27
1 1
= —u— —.
Y 2" 79

Then, and (z,y) ranges over the region R, then u and v range over
the rectangle defined by 1 <u < 7and —1 < v < 1.

By the change of variables formula, we then then have that

/R(x +y) dedy = /Du‘ggz:i;‘ dudov,
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r+y=1

T—y=—

Figure 9: Sketch of Region R in Problem 10

where

2

o(z,y) /2 1/2 1
5 = det (1/2 —1/2) -

Consequently,

1
/(x+y) dedy = —/ w dudv
R 2Jp

1 /1T
= —/ / u dudv
2J).04

1 127
:_/u_ dv
2/, 2Nh
48 [*
= — dv
4 )

= 24

14
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11. Evaluate / (x —y) dedy where R is the square in the zy-plane with vertices
R
(0,0), (2,—-1), (3,1) and (1,2).

Solution: A sketch of R is shown in Figure 10.

(1,2)

Figure 10: Sketch of Region R in Problem 11

Let ®: R? — R? denote the linear map that takes (1,0) to (2,—1)
and (0,1) to (1,2). Then, ® has the matrix representation

U 2 1 U
*() -4 2 ()
When then get the change of variables

r = 2u+wv,
Yy = —u-+2v,

which maps the unit square, D, in the uv—plane to R. Consequently,
the Change of Variable Formula implies that

/R(x—y) drdy = /D(Bu—v) ]ggg;‘ dudv,

where
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Evaluating the last integral we obtain

1
/(a:—y)dxdy = 5/
R 0
1 1
= 5/ §u2—vu} dv
o L2 0
1 -
= 5/ §—U dv
o L2 |

1
/ (3u — v) dudv
0

O

12. Let w = 2z dz+y dy and n = y dr —x dy denote differential 1-forms. Compute
each of the following w dn, n dw and d(wn).

Solution: Compute
dw = d(2z dz + y dy) = 2dadx + dydy = 0,

dn =d(y de — z dy) = dydzx — dady = —2dxdy.
Then

wdn = (2z dz + y dy)(—2dzdy) = —4xdzrdxdy — 2ydydxdy = 0,
since dzdr = 0 and dydxdy = —dadydy = 0, and

ndw=n-0=0.

Finally,
wn = 2z dzr+ydy)(y de —x dy)
= 2zy dadr — 222dzdy + y?dydr — zy dydy
= —(22% + y?)dzdy;
so that

d(wn) = —(4x dz + 2y dy)dady = 0.
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13. Let C denote the unit circle traversed in the counterclockwise direction. Eval-

uate the line integral [ 2* dy — y*dx.
c

Solution: Observe that / 23 dy — y®dx is the flux of the vector
c
field F(z,y) = 2% + y®j, so that, by the divergence form of the

Fundamental Theorem of Calculus in R2,

/x3 dy — y3dx :/ divF dady,
c D

where D is the unit disc in R? centered at the origin, and
divF = 32% + 3y* = 3(2* + o).

Using polar coordinates we then get that

2w 1
/J;3 dy —y’de = / / 3r? rdrdd
c o Jo
1
= 06m / r3dr
0

3T

7.
U

14. Let F(z,y) =y i—x j and R be the square in the zy—plane with vertices (0,0),

(2,-1), (3,1) and (1,2). Evaluate / F-nds.
OR

Solution: Observe that the divergence of F' is

: 0 9,
divF = %(y) + a—y(—x) =0

for all (z,y) € R?, so that, by the divergence form of the Fundamental
Theorem of Calculus in R2,

/ F~nd5:/dide:Udy:0.
OR R



