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Review Problems for Exam 2

1. Consider a wheel of radius a which is rolling on the x–axis in the xy–plane.
Suppose that the center of the wheel moves in the positive x–direction and a
constant speed vo. Let P denote a fixed point on the rim of the wheel.

(a) Give a path σ(t) = (x(t), y(t)) giving the position of the P at any time t,
if P is initially at the point (0, 2a).

Solution: Let θ(t) denote the angle that the ray from the center
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Figure 1: Circle

of the circle to the point (x(t), y(t)) makes with a vertical line

through the center. Then, vot = aθ(t); so that θ(t) =
vo

a
t and

x(t) = vot + a sin(θ(t))

and
y(t) = a + a cos(θ(t))

�

(b) Compute the velocity of P at any time t. When is the velocity of P
horizontal? What is the speed of P at those times?

Solution: The velocity vector is

σ′(t) = (x′(t), y′(t)) = (vo + aθ′(t) cos(θ(t)),−aθ′(t) sin(θ(t)))

where
θ′(t) =

vo

a
.

We then have that

σ′(t) = (vo + vo cos(θ(t)),−vo sin(θ(t)))
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The velocity of P is horizontal when

sin(θ(t)) = 0,

or
θ(t) = nπ,

where n is an integer; and when

cos(θ(t)) 6= −1.

We then get that the velocity of P is horizontal when

θ(t) = 2kπ

where k is an integer.
The speed at the points where the velocity if horizontal is then
equal to 2vo. �

2. Let f : R → R denote a twice–differentiable real valued function and define

u(x, t) = f(x− ct) for all (x, t) ∈ R2,

where c is a real constant.

Show that
∂2u

∂t2
= c2∂2u

∂x2
.

Solution: Use the Chain Rule to compute

∂u

∂t
= f ′(x− ct) · ∂

∂t
(x− ct) = −c f ′(x− ct),

and
∂2u

∂t2
= c f ′′(x− ct) · ∂

∂t
(x− ct) = c2 f ′′(x− ct).

Similarly,
∂2u

∂x2
= f ′′(x− ct)

since
∂

∂x
(x− ct) = 1. Hence,

∂2u

∂t2
= c2 f ′′(x− ct) = c2∂2u

∂x2
.

�
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3. Let f : R → R denote a twice–differentiable real valued function and define

u(x, y) = f(r) where r =
√

x2 + y2 for all (x, y) ∈ R2.

Express the Laplacian of u, ∆u, i.e., the divergence of the gradient of u, in
terms of f ′, f ′′ and r.

Solution: First note that r2 = x2 + y2, from which we get that

2r
∂r

∂x
= 2x,

or
∂r

∂x
=

x

r
.

Similarly,
∂r

∂y
=

y

r
.

Next, use the Chain Rule to compute

∂u

∂x
= f ′(r) · ∂r

∂x
= f ′(r)

x

r
.

Differentiating with respect to x again, using the Chain, Product and
Quotient rules,

∂2u

∂x2
=

∂

∂x

(
x
f ′(r)

r

)

=
f ′(r)

r
+ x

∂

∂x

(
f ′(r)

r

)

=
f ′(r)

r
+ x

rf ′′(r)x
r
− f ′(r)x

r

r2

=
f ′(r)

r
+

x2

r2
f ′′(r)− x2

r3
f ′(r)

Similarly,
∂2u

∂y2
=

f ′(r)

r
+

y2

r2
f ′′(r)− y2

r3
f ′(r).
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Hence

∆u =
∂2u

∂x2
+

∂2u

∂y2

= 2
f ′(r)

r
+

x2 + y2

r2
f ′′(r)− x2 + y2

r3
f ′(r)

= 2
f ′(r)

r
+

r2

r2
f ′′(r)− r2

r3
f ′(r)

= 2
f ′(r)

r
+ f ′′(r)− 1

r
f ′(r)

= f ′′(r) +
1

r
f ′(r).

�

4. Let f(x, y) = 4x− 7y for all (x, y) ∈ R2, and g(x, y) = 2x2 + y2.

(a) Sketch the graph of the set C = g−1(1) = {(x, y) ∈ R2 | g(x, y) = 1}.
(b) Show that at the points where f has an extremum on C, the gradient of

f is parallel to the gradient of g.

Solution: The curve C is given by the set of points (x, y) in R2

such that
2x2 + y2 = 1,

or
x2

1/2
+ y2 = 1.

That is, C is an ellipse with minor vertices ±1/
√

2 and major
vertices ±1. �

The sketch is shown in Figure 2.

(c) Find largest and the smallest value of f on C.

Solution: Let σ(t) be a parametrization of the ellipse. We want
to find a value of t for which the function f(σ(t)) is the largest.
Thus, we first look for critical points of this function. By the
Chain Rule,

d

dt
(f(σ(t))) = ∇f(σ(t)) · σ′(t).
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Figure 2: Sketch of ellipse

Thus, t is a critical point if the tangent vector σ′(t) is perpendic-
ular to ∇f(x, y) = 4̂i− 7ĵ.
On the other hand, from

g(σ(t)) = 1 for all t

we get that
∇g(σ(t)) · σ′(t) = 0

so that σ′(t) is also perpendicular to ∇g(x, y) = 4x̂i+2yĵ. Hence,
∇f and ∇g must be parallel at a critical points; that is, there
must be a constant λ 6= 0 such that

∇g(x, y) = λ∇f(x, y)

or
4x̂i + 2yĵ = 4λ̂i− 7λĵ.

We then get that
4x = 4λ

and
2y = −7λ.

In other words, a critical point (x, y) must lie in the line

2y = −7x.
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Next, we find the intersection of this line with the ellipse.
Solving for y and substituting into the equation of the ellipse we
get that

2x2 +

(
−7x

2

)2

= 1

or

2x2 +
49

4
x2 = 1

or
57

4
x2 = 1

or

x2 =
4

57

from which we get that

x = ± 2√
57

.

We therefore get the critical points(
2√
57

,− 7√
57

)
and

(
− 2√

57
,

7√
57

)
.

Evaluating f at each of these points we find that

f

(
2√
57

,− 7√
57

)
=

8√
57

+
49√
57

=
√

57

and

f

(
− 2√

57
,

7√
57

)
= − 8√

57
− 49√

57
= −

√
57.

Thus, f is the largest at

(
2√
57

,− 7√
57

)
and the smallest at(

− 2√
57

,
7√
57

)
. The largest value of f on C is then

√
57, and

its smallest value on C is −
√

57. �

5. Let C = {(x, y) ∈ R2 | x2 + y2 = 1, y > 0}; i.e., C is the upper unit semi–circle.
C can be parametrized by

σ(τ) = (τ,
√

1− τ 2) for − 1 6 τ 6 1.
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(a) Compute s(t), the arclength along C from (−1, 0) to the point σ(t), for
−1 6 t 6 1.

Solution: Compute σ′(τ) =

(
1,− τ√

1− τ 2

)
. for all τ ∈ (−1, 1).

Then,

‖σ′(τ)‖ =

√
1 +

τ 2

1− τ 2
=

1√
1− τ 2

.

It then follows that

s(t) =

∫ t

−1

1√
1− τ 2

dτ for − 1 6 t 6 1.

�

(b) Compute s′(t) for −1 < t < t and sketch the graph of s as function of t.

Solution: By the Fundamental Theorem of Calculus,

s′(t) =
1√

1− t2
for − 1 < t < 1.

Note then that s′(t) > 0 for all t ∈ (−1, 1) and therefore s is
strictly increasing on (−1, 1).
Next, compute the derivative of s′(t) to get the second derivative
of s(t):

s′′(t) =
t

(1− t2)3/2
for − 1 < t < 1.

It then follows that s′′(t) < 0 for −1 < t < 0 and s′′(t) > 0 for
0 < t < 1. Thus, the graph of s = s(t) is concave down on (−1, 0)
and concave up on (0, 1).
Finally, observe that s(−1) = 0, s(0) = π/2 (the arc–length along
a quarter of the unit circle), and s(1) = π (the arc–length along
a semi–circle of unit radius). We can then sketch the graph of
s = s(t) as shown in Figure 3. �

(c) Show that cos(π − s(t)) = t for all −1 6 t 6 1, and deduce that

sin(s(t)) =
√

1− t2 for all − 1 6 t 6 1.

Solution: Figure 4 shows the upper unit semicircle and a point
σ(t) on it. Putting θ(t) = π− s(t), then θ(t) is the angle, in radi-
ans, that the ray from the origin to σ(t) makes with the positive
x–axis. It then follows that

cos(θ(t)) = t
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s

t

Figure 3: Sketch of s = s(t)

and
sin(θ(t)) =

√
1− t2.

Since
sin(θ(t)) = sin(π − s(t)) = sin(s(t),

the result follows.
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�
�
�
�
�

Figure 4: Sketch of Semi–circle

�

6. Let R denote the open unit disc in R2; that is, R = {(x, y) ∈ R2 | x2 + y2 < 1}.
Evaluate the integral ∫

R

ln(x2 + y2) dxdy
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by first evaluating the integral∫
Aε

ln(x2 + y2) dxdy,

where Aε is the annulus {(x, y) ∈ R2 | ε2 < x2 + y2 < 1}, for 0 < ε < 1, and
then computing the limit at ε goes to 0.

Solution: First, evaluate the integral on the annulus pictured in
Figure 5.

y

xε��
��

Figure 5: Sketch of Aε

Using polar coordinates we obtain∫
Aε

ln(x2 + y2) dxdy =

∫ 2π

0

∫ 1

ε

ln(r2) r drdθ

= 4π

∫ 1

ε

ln(r) r dr

Integrating by parts, with u = ln(r) and dv = r dr, we then get that∫
Aε

ln(x2 + y2) dxdy = 4π

[
−ε2

2
ln(ε)−

∫ 1

ε

r

2
dr

]

= 4π

[
ε2

4
− ε2

2
ln(ε)− 1

4

]
.

As ε → 0, we can show, using L’Hospital’s rule, that

lim
ε→0

ε2

2
ln(ε) = 0.



Math 107. Rumbos Fall 2008 10

It then follows that∫
R

ln(x2 + y2) dxdy = lim
ε→0

∫
Aε

ln(x2 + y2) dxdy = −π.

�

7. Let A denote the annulus {(x, y) ∈ R2 | 1 < x2 + y2 < 4}, and evaluate∫
A

1

x2 + y2
dxdy.

Solution: Proceeding as in the previous problem, we obtain that∫
A

1

x2 + y2
dxdy =

∫ 2π

0

∫ 2

1

1

r2
r drdθ,

see Figure 6.

y

x1 2&%
'$

Figure 6: Sketch of A

Then, ∫
A

1

x2 + y2
dxdy = 2π

∫ 2

1

1

r
dr = 2π ln(2).

�

8. Let R = {(x, y) ∈ R2 | 0 6 x 6 y, x2 + y2 6 1}, and evaluate

∫
R

x2 dxdy.

Solution: A sketch of the region R is shown in Figure
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Figure 7: Sketch of region R in Problem 8

We may use polar coordinates to do this problem as follows∫
R

x2 dxdy =

∫ π/2

π/4

∫ 1

0

r2 cos2(θ) r drdθ

=

∫ π/2

π/4

cos2(θ)

∫ 1

0

r3 drdθ

=
1

4

∫ π/2

π/4

cos2(θ) dθ

=
1

4

∫ π/2

π/4

1

2
(1 + cos(2θ)) dθ,

where we have used the double angle formula for cos2 θ. We then have
that ∫

R

x2 dxdy =
1

8

∫ π/2

π/4

(1 + cos(2θ)) dθ

=
1

8

[
θ +

1

2
sin(2θ)

]π/2

π/4

=
1

8

(
π

4
− 1

2

)

=
1

32
(π − 2) .

�
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9. Let R denote the region in the xy–plane bounded by the lines x + y = 1,

x + y = 4, x− y = −1 and x− y = 1. Evaluate

∫
R

(x + y)ex−y dxdy.

Solution: The region for this problem is sketched in Figure 8.
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x− y = −1
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Figure 8: Sketch of Region R in Problem 9

Make the change of variables x + y = u and x − y = v. We then
obtain that

x =
1

2
u +

1

2
v

y =
1

2
u− 1

2
v

We then obtain the change of coordinates map

Φ

(
u
v

)
=

(
1/2 1/2
1/2 −1/2

) (
u
v

)
which maps the rectangle D = {(u, v) ∈ R2 | 1 6 u 6 4,−1 6 v 6 1}
to the region R. The change of variables formula then yields∫

R

(x + y)ex−y dxdy =

∫
D

uev
∣∣∣∂(x, y)

∂(u, v)

∣∣∣ dudv,

where
∂(x, y)

∂(u, v)
= det

(
1/2 1/2
1/2 −1/2

)
= −1

2
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Consequently,∫
R

(x + y)ex−y dxdy =
1

2

∫
D

uev dudv

=
1

2

∫ 1

−1

∫ 4

1

uev dudv

=
1

2

∫ 1

−1

ev u2

2

∣∣∣4
1

dv

=
15

4

∫ 1

−1

ev dv

=
15

4
(e1 − e−1).

�

10. Evaluate

∫
R

(x+y) dxdy where R is the rectangle in the xy–plane with vertices

(1, 0), (4, 3), (3, 4) and (0, 1).

Solution: A sketch of the region R is shown in Figure 9.

We can make the change of variables

u = x + y,
v = x− y,

from which we get that

x =
1

2
u +

1

2
v,

y =
1

2
u− 1

2
v.

Then, and (x, y) ranges over the region R, then u and v range over
the rectangle defined by 1 6 u 6 7 and −1 6 v 6 1.

By the change of variables formula, we then then have that∫
R

(x + y) dxdy =

∫
D

u
∣∣∣∂(x, y)

∂(u, v)

∣∣∣ dudv,
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Figure 9: Sketch of Region R in Problem 10

where
∂(x, y)

∂(u, v)
= det

(
1/2 1/2
1/2 −1/2

)
= −1

2

Consequently, ∫
R

(x + y) dxdy =
1

2

∫
D

u dudv

=
1

2

∫ 1

−1

∫ 7

1

u dudv

=
1

2

∫ 1

−1

u2

2

∣∣∣7
1

dv

=
48

4

∫ 1

−1

dv

= 24.

�
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11. Evaluate

∫
R

(x− y) dxdy where R is the square in the xy–plane with vertices

(0, 0), (2,−1), (3, 1) and (1, 2).

Solution: A sketch of R is shown in Figure 10.
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(1, 2)

Figure 10: Sketch of Region R in Problem 11

Let Φ: R2 → R2 denote the linear map that takes (1, 0) to (2,−1)
and (0, 1) to (1, 2). Then, Φ has the matrix representation

Φ

(
u
v

)
=

(
2 1
−1 2

) (
u
v

)
.

When then get the change of variables

x = 2u + v,
y = −u + 2v,

which maps the unit square, D, in the uv–plane to R. Consequently,
the Change of Variable Formula implies that∫

R

(x− y) dxdy =

∫
D

(3u− v)
∣∣∣∂(x, y)

∂(u, v)

∣∣∣ dudv,

where
∂(x, y)

∂(u, v)
= det

(
2 1
−1 2

)
= 5.
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Evaluating the last integral we obtain∫
R

(x− y) dxdy = 5

∫ 1

0

∫ 1

0

(3u− v) dudv

= 5

∫ 1

0

[
3

2
u2 − vu

]1

0

dv

= 5

∫ 1

0

[
3

2
− v

]
dv

= 5

[
3

2
v − 1

2
v2

]1

0

= 5.

�

12. Let ω = 2x dx+y dy and η = y dx−x dy denote differential 1–forms. Compute
each of the following ω dη, η dω and d(ωη).

Solution: Compute

dω = d(2x dx + y dy) = 2dxdx + dydy = 0,

dη = d(y dx− x dy) = dydx− dxdy = −2dxdy.

Then

ω dη = (2x dx + y dy)(−2dxdy) = −4xdxdxdy − 2ydydxdy = 0,

since dxdx = 0 and dydxdy = −dxdydy = 0, and

η dω = η · 0 = 0.

Finally,

ωη = (2x dx + y dy)(y dx− x dy)
= 2xy dxdx− 2x2dxdy + y2dydx− xy dydy
= −(2x2 + y2)dxdy;

so that
d(ωη) = −(4x dx + 2y dy)dxdy = 0.

�
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13. Let C denote the unit circle traversed in the counterclockwise direction. Eval-

uate the line integral

∫
C

x3 dy − y3dx.

Solution: Observe that

∫
C

x3 dy − y3dx is the flux of the vector

field F (x, y) = x3̂i + y3ĵ, so that, by the divergence form of the
Fundamental Theorem of Calculus in R2,∫

C

x3 dy − y3dx =

∫
D

divF dxdy,

where D is the unit disc in R2 centered at the origin, and

divF = 3x2 + 3y2 = 3(x2 + y2).

Using polar coordinates we then get that∫
C

x3 dy − y3dx =

∫ 2π

0

∫ 1

0

3r2 rdrdθ

= 6π

∫ 1

0

r3dr

=
3π

2
.

�

14. Let F (x, y) = y î−x ĵ and R be the square in the xy–plane with vertices (0, 0),

(2,−1), (3, 1) and (1, 2). Evaluate

∫
∂R

F · n ds.

Solution: Observe that the divergence of F is

divF =
∂

∂x
(y) +

∂

∂y
(−x) = 0

for all (x, y) ∈ R2, so that, by the divergence form of the Fundamental
Theorem of Calculus in R2,∫

∂R

F · n ds =

∫
R

divF dxdy = 0.

�


