Information Sheet for Final Exam

1. Euclidean Norm and Inner Product

Let v and w denote vectors in $\mathbb{R}^{n}, v \cdot w$ denote the dot product of v and w, and $\|v\|$ and $\|w\|$ their respective norms; then,
(a) Cauchy-Schwarz Inequality

$$
|v \cdot w| \leqslant\|v\|\|w\|
$$

(b) Triangle Inequality

$$
\|v+w\| \leqslant\|v\|+\|w\|
$$

2. Cross-Product in \mathbb{R}^{3}

For vectors v and w in \mathbb{R}^{3}, the cross-product, $v \times w \in \mathbb{R}^{3}$, of v and w is antisymmetric (i.e., $w \times v=-v \times w$), bilinear, and satisfies:

$$
\widehat{i} \times \widehat{j}=\widehat{k}, \quad \widehat{k} \times \widehat{i}=\widehat{j}, \quad \text { and } \quad \widehat{j} \times \widehat{k}=\widehat{i}
$$

3. Planes in \mathbb{R}^{3}

The equation of a plane through $P_{o}\left(x_{o}, y_{o}, z_{o}\right)$ and perpendicular to the vector $n=a \widehat{i}+b \widehat{j}+c \widehat{k}$ is given by

$$
a\left(x-x_{o}\right)+b\left(y-y_{o}\right)+c\left(z-z_{o}\right)=0 .
$$

4. Jacobian Matrix of a C^{1} Function

The Jacobian matrix of a function $\Phi: D \rightarrow \mathbb{R}^{2}$ defined on an open subset, D, of \mathbb{R}^{2} by

$$
\Phi\binom{u}{v}=\binom{x(u, v)}{y(u, v)} \quad \text { for all } \quad\binom{u}{v} \in D
$$

where x and y are C^{1} scalar fields on D, is given by

$$
D \Phi(u, v)=\left(\begin{array}{ll}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}
\end{array}\right)
$$

where the partial derivatives are evaluated at (u, v) in D.

5. Jacobian Determinant of a C^{1} Function

The Jacobian determinant, or simply the Jacobian, of a C^{1} function $\Phi: D \rightarrow \mathbb{R}^{2}$ is the determinant of the Jacobian matrix $D \Phi(u, v)$. We denote it by $\frac{\partial(x, y)}{\partial(u, v)}$.

6. Tangent Line Approximation to a C^{1} Path

The tangent line approximation to a C^{1} path $\sigma:[a, b] \rightarrow \mathbb{R}^{n}$ at $\sigma\left(t_{o}\right)$, for some $t_{o} \in(a, b)$, is the straight line given by

$$
L(t)=\sigma\left(t_{o}\right)+\left(t-t_{o}\right) \sigma^{\prime}\left(t_{o}\right) \quad \text { for all } t \in \mathbb{R}
$$

7. Arc Length

Let $\sigma:[a, b] \rightarrow \mathbb{R}^{n}$ be a C^{1} parametrization of a curve C. The arc length of C is given by

$$
\ell(C)=\int_{a}^{b}\left\|\sigma^{\prime}(t)\right\| \mathrm{d} t
$$

8. Path Integral

Let $f: U \rightarrow \mathbb{R}$ be a continuous scalar field defined on some open subset of \mathbb{R}^{n}. Suppose there is a C^{1} curve C contained in U. Then the integral of f over C is given by

$$
\int_{C} f \mathrm{~d} s=\int_{a}^{b} f(\sigma(t))\left\|\sigma^{\prime}(t)\right\| \mathrm{d} t
$$

for any C^{1} parametrization, $\sigma:[a, b] \rightarrow \mathbb{R}^{n}$ of the curve C.

9. Line Integral

Let $F: U \rightarrow \mathbb{R}^{n}$ denote a continuous vector field defined on some open subset, U, of \mathbb{R}^{n}. Suppose there is a C^{1} curve, C, contained in U. Then, the line integral of F over C is given by

$$
\int_{C} F \cdot T \mathrm{~d} s=\int_{a}^{b} F(\sigma(t)) \cdot \sigma^{\prime}(t) \mathrm{d} t
$$

for any C^{1} parametrization, $\sigma:[a, b] \rightarrow \mathbb{R}^{n}$, of the curve C. Here T denotes the tangent unit vector to the curve, and it is given by

$$
T(t)=\frac{1}{\left\|\sigma^{\prime}(t)\right\|} \sigma^{\prime}(t) \quad \text { for all } t \in(a, b)
$$

If $F=P \widehat{i}+Q \widehat{j}+R \widehat{k}$, where $P Q$ and R are C^{1} scalar fields defined on U,

$$
\int_{C} F \cdot T \mathrm{~d} s=\int_{C} P \mathrm{~d} x+Q \mathrm{~d} y+R \mathrm{~d} z
$$

The expression $P \mathrm{~d} x+Q \mathrm{~d} y+R \mathrm{~d} z$ is called a differential 1-form.

10. Flux

Let $F=P \widehat{i}+Q \widehat{j}$, where P and Q are continuous scalar fields defined on an open subset, U, of \mathbb{R}^{2}. Suppose there is a C^{1} simple closed curve C contained in U. Then the flux of F across C is given by

$$
\int_{C} F \cdot \widehat{n} \mathrm{~d} s=\int_{C} P \mathrm{~d} y-Q \mathrm{~d} x
$$

Here, \widehat{n} denotes a unit vector perpendicular to C and pointing to the outside of C.

11. Green's Theorem.

The Fundamental Theorem of Calculus,

$$
\int_{M} \mathrm{~d} \omega=\int_{\partial M} \omega
$$

takes the following form in two-dimensional Euclidean space:
Let R denote a region in \mathbb{R}^{2} bounded by a simple closed curve, $\partial \mathbb{R}$, made up of a finite number of C^{1} paths traversed in the counterclockwise sense. Let P and Q denote two C^{1} scalar fields defined on some open set containing R and its boundary, ∂R. Then,

$$
\int_{R}\left(\frac{\partial Q}{\partial x}-\frac{\partial P}{\partial y}\right) \mathrm{d} x \mathrm{~d} y=\int_{\partial R} P \mathrm{~d} x+Q \mathrm{~d} y
$$

12. The Divergence Theorem in \mathbb{R}^{2}.

Let R denote a region in \mathbb{R}^{2} bounded by a simple closed curve, $\partial \mathbb{R}$, made up of a finite number of C^{1} paths traversed in the counterclockwise sense. The flux of a vector field $F=\widehat{P i}+Q \widehat{j}$ across ∂R, where P and Q are C^{1} scalar fields defined on some open set containing R and its boundary, ∂R, is defined by

$$
\oint_{\partial R} F \cdot \hat{n} \mathrm{~d} s=\oint_{\partial R} P \mathrm{~d} y-Q \mathrm{~d} x .
$$

The Theorem of Calculus in this case takes the form

$$
\oint_{\partial R} F \cdot \widehat{n} \mathrm{~d} s=\int_{R} \operatorname{div} F \mathrm{~d} x \mathrm{~d} y
$$

where $\operatorname{div} F=\frac{\partial P}{\partial x}+\frac{\partial Q}{\partial y}$ is the divergence of the C^{1} field F.

13. The Change of Variables Theorem

Let R denote a region in the $x y$-plane and D a region in the $u v-$ plane. Suppose that there is a change or coordinates function $\Phi: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ that maps D onto R. Then, for any continuous function, f, defined on R,

$$
\int_{R} f(x, y) \mathrm{d} x \mathrm{~d} y=\int_{D} f(\Phi(u, v))\left|\frac{\partial(x, y)}{\partial(u, v)}\right| \mathrm{d} u \mathrm{~d} v
$$

where $\frac{\partial(x, y)}{\partial(u, v)}$ denotes the determinant of the Jacobian matrix of Φ.

14. Polar Coordinates

Suppose the change of variable

$$
\left\{\begin{array}{l}
x=r \cos \theta \\
y=r \sin \theta
\end{array}\right.
$$

maps the region D in the $r \theta$-plane onto the region R in the $x y$-plane in a one-to-one fashion. Then, for any continuous function, f, defined on R,

$$
\int_{R} f(x, y) \mathrm{d} x \mathrm{~d} y=\int_{D} f(r \cos \theta, r \sin \theta) r \mathrm{~d} r \mathrm{~d} \theta
$$

