Formulas Sheet

1. The Binomial Distribution

If X is a binomial random variable with parameters n and p, then

$$
P(X=k)=\binom{n}{k} p^{k}(1-p)^{n-k} \quad \text { for } k=0,1,2, \ldots, n
$$

The expected value of X is $n p$ and its variance is $n p(1-p)$.

2. The Hypergeometric Distribution

If X is a hypergeometric random variable with parameters M, number of objects of one type, N, the total number of objects (so that $N-M$ is the number of objects of the other type), and n, the sample size, then

$$
P(X=k)=\frac{\binom{M}{k} \cdot\binom{N-M}{n-k}}{\binom{N}{n}}, \quad \text { for } M-(N-n) \leqslant k \leqslant M
$$

is the probability of selecting k objects of the first type in a random sample of size n.
The expected value of X is $\frac{n M}{N}$.

3. Confidence Interval for the Mean

An approximate, level C, confidence interval for the mean, μ, of a distribution, for the case in which the standard deviation, σ, is known and n is a large sample size, is given by

$$
\begin{equation*}
\left(\bar{X}_{n}-z^{*} \frac{\sigma}{\sqrt{n}}, \bar{X}_{n}+z^{*} \frac{\sigma}{\sqrt{n}}\right) \tag{1}
\end{equation*}
$$

where z^{*} is a positive value with

$$
P\left(-z^{*}<Z<z^{*}\right) \approx C
$$

Z being the standard normal random variable, and \bar{X}_{n} is the sample mean.
For instance, when $C=0.95, z^{*}=1.96$.
The expression $z^{*} \frac{\sigma}{\sqrt{n}}$ is known as the margin of error.

4. Confidence Interval for a Proportion

An approximate, level C, confidence interval for a proportion is obtained from the confidence interval for the mean given above by letting $\bar{X}_{n}=\widehat{p}_{n}$, the sample proportion, and $\sigma=\sqrt{\widehat{p}_{n}\left(1-\widehat{p}_{n}\right)}$, in the formula (1) for the confidence interval for a mean.

