Exam 1

September 30, 2009

Name: _____

This is a closed book exam. Show all significant work and justify all your answers. Use your own paper and/or the paper provided by the instructor. You have 75 minutes to work on the following 7 problems. Relax.

- 1. The points P(1,0,0), Q(0,2,0) and R(0,0,3) determine a unique plane in three dimensional Euclidean space, \mathbb{R}^3 .
 - (a) Give the equation of the plane determined by P, Q and R.
 - (b) Give the parametric equations of the line through the point (1, 1, 1) which is orthogonal to the plane determined by P, Q and R.
 - (c) Find the intersection between the line found in part (b) above and the plane determined by P, Q and R.
- 2. Let P, Q and R be the points given in Problem 1.
 - (a) Give the coordinates of the point in the plane determined by P, Q and R which is the closest to the point (1, 1, 1).
 - (b) Find the (shortest) distance from the point (1, 1, 1) to the plane determined by P, Q and R.
- Let P, Q and R be the points given in Problem 1.
 Give the area of the triangle whose vertices are P, Q and R.
- 4. Let U denote an open subset of \mathbb{R}^n , and let $F: U \to \mathbb{R}^m$ be a vector valued function defined on U.
 - (a) State precisely what it means for F to be continuous at $u \in U$.
 - (b) Assume that there is a constant $K \ge 0$ such that

$$||F(v_1) - F(v_2)|| \leqslant K ||v_1 - v_2|| \quad \text{for all } v_1, v_2 \in U.$$
(1)

Prove that F is continuous on U.

5. Given $w \in \mathbb{R}^n$, define $f \colon \mathbb{R}^n \to \mathbb{R}$ by

$$f(v) = w \cdot v$$
 for all $v \in \mathbb{R}^n$;

that is, f(v) is the dot product of w with v.

(a) Use the Cauchy–Schwarz inequality to verify that f satisfies the condition (1) in part (b) of Problem 4; namely,

$$|f(v_1) - f(v_2)| \leq K ||v_1 - v_2||$$
 for all $v_1, v_2 \in \mathbb{R}^n$.

What is K in this case?

Deduce therefore that f is continuous on \mathbb{R}^n .

(b) Deduce also that the function $P_i(x_1, x_2, ..., x_n) = x_i$, for all points $(x_1, x_2, ..., x_n)$ in \mathbb{R}^n , is continuous on \mathbb{R}^n ; where x_i denotes the i^{th} coordinate of the point $(x_1, x_2, ..., x_n)$ for i = 1, 2, ..., n. Explain your reasoning.

6. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be defined by

$$f(x,y) = \begin{cases} \frac{|x|y}{\sqrt{x^2 + y^2}} & \text{if } (x,y) \neq (0,0); \\ 0 & \text{if } (x,y) = (0,0). \end{cases}$$

Prove that f is continuous at (0, 0).

7. Is the function $f : \mathbb{R}^2 \to \mathbb{R}$, defined by

$$f(x,y) = \begin{cases} \frac{|x|}{\sqrt{x^2 + y^2}} & \text{if } (x,y) \neq (0,0); \\ 0 & \text{if } (x,y) = (0,0), \end{cases}$$

continuous at (0,0)? Justify your answer.