Exam 1

September 30, 2009
Name: \qquad
This is a closed book exam. Show all significant work and justify all your answers. Use your own paper and/or the paper provided by the instructor. You have 75 minutes to work on the following 7 problems. Relax.

1. The points $P(1,0,0), Q(0,2,0)$ and $R(0,0,3)$ determine a unique plane in three dimensional Euclidean space, \mathbb{R}^{3}.
(a) Give the equation of the plane determined by P, Q and R.
(b) Give the parametric equations of the line through the point $(1,1,1)$ which is orthogonal to the plane determined by P, Q and R.
(c) Find the intersection between the line found in part (b) above and the plane determined by P, Q and R.
2. Let P, Q and R be the points given in Problem 1 .
(a) Give the coordinates of the point in the plane determined by P, Q and R which is the closest to the point $(1,1,1)$.
(b) Find the (shortest) distance from the point $(1,1,1)$ to the plane determined by P, Q and R.
3. Let P, Q and R be the points given in Problem 1 .

Give the area of the triangle whose vertices are P, Q and R.
4. Let U denote an open subset of \mathbb{R}^{n}, and let $F: U \rightarrow \mathbb{R}^{m}$ be a vector valued function defined on U.
(a) State precisely what it means for F to be continuous at $u \in U$.
(b) Assume that there is a constant $K \geqslant 0$ such that

$$
\begin{equation*}
\left\|F\left(v_{1}\right)-F\left(v_{2}\right)\right\| \leqslant K\left\|v_{1}-v_{2}\right\| \quad \text { for all } v_{1}, v_{2} \in U . \tag{1}
\end{equation*}
$$

Prove that F is continuous on U.
5. Given $w \in \mathbb{R}^{n}$, define $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ by

$$
f(v)=w \cdot v \quad \text { for all } v \in \mathbb{R}^{n}
$$

that is, $f(v)$ is the dot product of w with v.
(a) Use the Cauchy-Schwarz inequality to verify that f satisfies the condition (1) in part (b) of Problem 4; namely,

$$
\left|f\left(v_{1}\right)-f\left(v_{2}\right)\right| \leqslant K\left\|v_{1}-v_{2}\right\| \quad \text { for all } v_{1}, v_{2} \in \mathbb{R}^{n}
$$

What is K in this case?
Deduce therefore that f is continuous on \mathbb{R}^{n}.
(b) Deduce also that the function $P_{i}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=x_{i}$, for all points $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ in \mathbb{R}^{n}, is continuous on \mathbb{R}^{n}; where x_{i} denotes the $i^{\text {th }}$ coordinate of the point $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ for $i=1,2, \ldots, n$. Explain your reasoning.
6. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be defined by

$$
f(x, y)= \begin{cases}\frac{|x| y}{\sqrt{x^{2}+y^{2}}} & \text { if }(x, y) \neq(0,0) \\ 0 & \text { if }(x, y)=(0,0)\end{cases}
$$

Prove that f is continuous at $(0,0)$.
7. Is the function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$, defined by

$$
f(x, y)= \begin{cases}\frac{|x|}{\sqrt{x^{2}+y^{2}}} & \text { if }(x, y) \neq(0,0) \\ 0 & \text { if }(x, y)=(0,0)\end{cases}
$$

continuous at $(0,0)$? Justify your answer.

