Review Problems for Exam 1

1. Compute the (shortest) distance from the point P(4, 0, -7) in \mathbb{R}^3 to the plane given by

$$4x - y - 3z = 12.$$

2. Compute the (shortest) distance from the point P(4, 0, -7) in \mathbb{R}^3 to the line given by the parametric equations

$$\begin{cases} x = -1 + 4t, \\ y = -7t, \\ z = 2 - t. \end{cases}$$

- 3. Compute the area of the triangle whose vertices in \mathbb{R}^3 are the points (1,1,0), (2,0,1) and (0,3,1)
- 4. Let v and w be two vectors in \mathbb{R}^3 , and let λ be a scalar. Show that the area of the parallelogram determined by the vectors v and $w + \lambda v$ is the same as that determined by v and w.
- 5. Let \hat{u} denote a unit vector in \mathbb{R}^n and $P_{\hat{u}}(v)$ denote the orthogonal projection of v along the direction of \hat{u} for any vector $v \in \mathbb{R}^n$. Use the Cauchy–Schwarz inequality to prove that the map

$$v \mapsto P_{\widehat{u}}(v)$$
 for all $v \in \mathbb{R}^n$

is a continuous map from \mathbb{R}^n to \mathbb{R}^n .

6. Let $U \subseteq \mathbb{R}^n$ be open and $F: U \to \mathbb{R}^m$ be function satisfying

$$||F(v) - F(w)|| \leq K ||v - w||^{\alpha} \text{ for all } v, w \in U,$$

and some positive constants K and α . Prove that F is continuous on U.

Math 107. Rumbos

7. Define $f: \mathbb{R}^2 \to \mathbb{R}$ by

$$f(x,y) = \begin{cases} \frac{x^2y}{x^2 + y^2} & \text{if } (x,y) \neq (0,0) \\ \\ 0 & \text{if } (x,y) = (0,0). \end{cases}$$

Prove that f is continuous at (0, 0).

8. Show that

$$f(x,y) = \begin{cases} \frac{x^2 - y^2}{x^2 + y^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$$

is not continuous at (0, 0).

9. Determine the value of L that would make the function

$$f(x,y) = \begin{cases} x \sin\left(\frac{1}{y}\right) & \text{if } y \neq 0; \\ L & \text{otherwise }, \end{cases}$$

continuous at (0,0). Is $f: \mathbb{R}^2 \to \mathbb{R}$ continuous on \mathbb{R}^2 ? Justify your answer.

10. Define $G: \mathbb{R}^2 \to \mathbb{R}$ by G(x, y) = xy for all $(x, y) \in \mathbb{R}^2$. Prove that G is continuous on \mathbb{R}^2 ; that is, prove that

$$\lim_{(x,y)\to(x_o,y_o)} G(x,y) = G(x_o,y_o) \quad \text{for all} \ (x_o,y_o) \in \mathbb{R}^2$$

or

$$\lim_{(x,y)\to(x_o,y_o)} |G(x,y) - G(x_o,y_o)| = 0 \quad \text{for all} \ (x_o,y_o) \in \mathbb{R}^2$$

11. Let U denote an open subset of \mathbb{R}^2 and let $g: U \to \mathbb{R}$ be two scalar fields on U. Assume that $g(x_o, y_o) \neq 0$ for some $(x_o, y_o) \in U$. Prove that if g is continuous at (x_o, y_o) , then there exists $\delta > 0$ such that $B_{\delta}(x_o, y_o) \subseteq U$ and

$$(x,y) \in B_{\delta}(x_o, y_o) \Rightarrow |g(x,y)| > \frac{|g(x_o, y_o)|}{2}.$$

Fall 2009 2

Math 107. Rumbos

Suggestion: Consider $\varepsilon = \frac{|g(x_o, y_o)|}{2} > 0.$

12. Let U, g and (x_o, y_o) be as in the previous problem. Assume that $g(x_o, y_o) \neq 0$ and that g is continuous at (x_o, y_o) . Put

$$h(x,y) = \frac{1}{g(x,y)}.$$

Prove that h is continuous at (x_o, y_o) .

Suggestion: Use the result of the previous problem and the Squeeze Theorem.