Solutions to Review Problems for Exam 1

1. Compute the (shortest) distance from the point $P(4,0,-7)$ in \mathbb{R}^{3} to the plane given by

$$
4 x-y-3 z=12
$$

Solution: The point $P_{o}(3,0,0)$ is in the plane. Let

$$
w=\overrightarrow{P_{o} P}=\left(\begin{array}{c}
1 \\
0 \\
-7
\end{array}\right)
$$

The vector $n=\left(\begin{array}{c}4 \\ -1 \\ -3\end{array}\right) \quad$ is orthogonal to the plane. To find the shortest distance, d, from P to the plane, we compute the norm of the orthogonal projection of w onto n; that is,

$$
d=\left\|\mathrm{P}_{\widehat{n}}(w)\right\|,
$$

where

$$
\widehat{n}=\frac{1}{\sqrt{26}}\left(\begin{array}{c}
4 \\
-1 \\
-3
\end{array}\right)
$$

a unit vector in the direction of n, and

$$
\mathrm{P}_{\widehat{n}}(w)=(w \cdot \widehat{n}) \widehat{n} .
$$

It then follows that

$$
d=|w \cdot \widehat{n}|,
$$

where $w \cdot \widehat{n}=\frac{1}{\sqrt{26}}(4+21)=\frac{25}{\sqrt{26}}$. Hence, $d=\frac{25 \sqrt{26}}{26} \approx 4.9$.
2. Compute the (shortest) distance from the point $P(4,0,-7)$ in \mathbb{R}^{3} to the line given by the parametric equations

$$
\left\{\begin{array}{l}
x=-1+4 t \\
y=-7 t \\
z=2-t
\end{array}\right.
$$

Solution: The point $P_{o}(-1,0,2)$ is on the line. The vector

$$
v=\left(\begin{array}{c}
4 \\
-7 \\
-1
\end{array}\right)
$$

gives the direction of the line. Put

$$
w=\overrightarrow{P_{o} P}=\left(\begin{array}{c}
5 \\
0 \\
-9
\end{array}\right)
$$

The vectors v and w determine a parallelogram whose area is the norm of v times the shortest distance, d, from P to the line determined by v at P_{o}. We then have that

$$
\operatorname{area}(P(v, w))=\|v\| d
$$

from which we get that

$$
d=\frac{\operatorname{area}(P(v, w))}{\|v\|}
$$

On the other hand,

$$
\operatorname{area}(P(v, w))=\|v \times w\|
$$

where

$$
v \times w=\left|\begin{array}{ccc}
\widehat{i} & \widehat{j} & \widehat{k} \\
4 & -7 & -1 \\
5 & 0 & -9
\end{array}\right|=63 \widehat{i}+31 \widehat{j}+35 \widehat{k}
$$

Thus, $\|v \times w\|=\sqrt{(63)^{2}+(31)^{2}+(35)^{2}}=\sqrt{6155}$ and therefore

$$
d=\frac{\sqrt{6155}}{\sqrt{66}} \approx 9.7
$$

3. Compute the area of the triangle whose vertices in \mathbb{R}^{3} are the points $(1,1,0)$, $(2,0,1)$ and $(0,3,1)$

Solution: Label the points $P_{o}(1,1,0), P_{1}(2,0,1)$ and $P_{2}(0,3,1)$ and define the vectors

$$
v=\overrightarrow{P_{o} P_{1}}=\left(\begin{array}{c}
1 \\
-1 \\
1
\end{array}\right) \quad \text { and } \quad w=\overrightarrow{P_{o} P_{2}}=\left(\begin{array}{c}
-1 \\
2 \\
1
\end{array}\right) .
$$

The area of the triangle determined by the points P_{o}, P_{1} and P_{2} is then half of the area of the parallelogram determined by the vectors v and w. Thus,

$$
\operatorname{area}\left(\triangle P_{o} P_{1} P_{2}\right)=\frac{1}{2}\|v \times w\|
$$

where

$$
v \times w=\left|\begin{array}{ccc}
\widehat{i} & \widehat{j} & \widehat{k} \\
1 & -1 & 1 \\
-1 & 2 & 1
\end{array}\right|=-3 \widehat{i}-2 \widehat{j}+\widehat{k}
$$

Consequently, $\operatorname{area}\left(\triangle P_{o} P_{1} P_{2}\right)=\frac{1}{2} \sqrt{9+4+1}=\frac{\sqrt{14}}{2} \approx 1.87$.
4. Let v and w be two vectors in \mathbb{R}^{3}, and let λ be a scalar. Show that the area of the parallelogram determined by the vectors v and $w+\lambda v$ is the same as that determined by v and w.

Solution: The area of the parallelogram determined by v and $w+\lambda v$ is

$$
\operatorname{area}(P(v, w+\lambda v))=\|v \times(w+\lambda v)\|
$$

where

$$
v \times(w+\lambda v)=v \times w+\lambda v \times v=v \times w .
$$

Consequently, $\operatorname{area}(P(v, w+\lambda v))=\|v \times w\|=\operatorname{area}(P(v, w))$.
5. Let \widehat{u} denote a unit vector in \mathbb{R}^{n} and $P_{\widehat{u}}(v)$ denote the orthogonal projection of v along the direction of \widehat{u} for any vector $v \in \mathbb{R}^{n}$. Use the Cauchy-Schwarz inequality to prove that the map

$$
v \mapsto P_{\widehat{u}}(v) \text { for all } v \in \mathbb{R}^{n}
$$

is a continuous map from \mathbb{R}^{n} to \mathbb{R}^{n}.

Solution: $P_{\widehat{u}}(v)=(v \cdot \widehat{u}) \widehat{u}$ for all $v \in \mathbb{R}^{n}$. Consequently, for any $w, v \in \mathbb{R}^{n}$,

$$
\begin{aligned}
P_{\widehat{u}}(w)-P_{\widehat{u}}(v) & =(w \cdot \widehat{u}) \widehat{u}-(v \cdot \widehat{u}) \widehat{u} \\
& =(w \cdot \widehat{u}-v \cdot \widehat{u}) \widehat{u} \\
& =[(w-v) \cdot \widehat{u}] \widehat{u} .
\end{aligned}
$$

It then follows that

$$
\left\|P_{\widehat{u}}(w)-P_{\widehat{u}}(v)\right\|=|(w-v) \cdot \widehat{u}|,
$$

since $\|\widehat{u}\|=1$. Hence, by the Cauchy-Schwarz inequality,

$$
\left\|P_{\widehat{u}}(w)-P_{\widehat{u}}(v)\right\| \leqslant\|w-v\| .
$$

Applying the Squeeze Theorem we then get that

$$
\lim _{\|w-v\| \rightarrow 0}\left\|P_{\widehat{u}}(w)-P_{\widehat{u}}(v)\right\|=0
$$

which shows that $P_{\widehat{u}}$ is continuous at every $v \in V$.
6. Let $U \subseteq \mathbb{R}^{n}$ be open and $F: U \rightarrow \mathbb{R}^{m}$ be function satisfying

$$
\begin{equation*}
\|F(v)-F(w)\| \leqslant K\|v-w\|^{\alpha} \quad \text { for all } v, w \in U \tag{1}
\end{equation*}
$$

and some positive constants K and α.
Prove that F is continuous on U.
Solution: Let u be any vector in u. Then, since U is open, there exists $r>0$ such that $B_{r}(u) \subseteq U$. By the condition in (1), for any $v \in B_{r}(u)$,

$$
0 \leqslant\|F(v)-F(u)\| \leqslant K\|v-u\|^{\alpha}
$$

Now, since $\alpha>0$,

$$
\lim _{\|v-u\| \rightarrow 0}\|v-u\|^{\alpha}=0
$$

Consequently, by the Squeeze Theorem,

$$
\lim _{\|v-u\| \rightarrow 0}\|F(v)-F(u)\|=0
$$

which shows that F is continuous at u. Since u was an arbitrary element of U, we have shown that F is continuous on U.
7. Define $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ by

$$
f(x, y)= \begin{cases}\frac{x^{2} y}{x^{2}+y^{2}} & \text { if }(x, y) \neq(0,0) \\ 0 & \text { if }(x, y)=(0,0)\end{cases}
$$

Prove that f is continuous at $(0,0)$.
Solution: For $(x, y) \neq(0,0)$

$$
\begin{aligned}
|f(x, y)| & =\frac{x^{2}|y|}{x^{2}+y^{2}} \\
& \leqslant|y| \\
& \leqslant \sqrt{x^{2}+y^{2}}
\end{aligned}
$$

We then have that, for $(x, y) \neq(0,0)$,

$$
0 \leqslant|f(x, y)-f(0,0)| \leqslant\|(x, y)-(0,0)\| .
$$

Thus, by the Squeeze Theorem,

$$
\lim _{\|(x, y)-(0,0)\| \rightarrow 0}|f(x, y)-f(0,0)|=0
$$

which shows that f is continuous at $(0,0)$.
8. Show that

$$
f(x, y)= \begin{cases}\frac{x^{2}-y^{2}}{x^{2}+y^{2}}, & (x, y) \neq(0,0) \\ 0, & (x, y)=(0,0)\end{cases}
$$

is not continuous at $(0,0)$.
Solution: Let $\varepsilon=\frac{1}{2}$ and observe that for any $\delta>0$

$$
f\left(\frac{\delta}{2}, 0\right)=1
$$

Thus,

$$
\left\|\left(\frac{\delta}{2}, 0\right)\right\|=\frac{\delta}{2}<\delta
$$

but

$$
\left|f\left(\frac{\delta}{2}, 0\right)-f(0,0)\right|=1>\frac{1}{2}=\varepsilon
$$

Hence, f is not continuous at $(0,0)$.
9. Determine the value of L that would make the function

$$
f(x, y)= \begin{cases}x \sin \left(\frac{1}{y}\right) & \text { if } y \neq 0 \\ L & \text { otherwise }\end{cases}
$$

continuous at $(0,0)$. Is $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ continuous on \mathbb{R}^{2} ? Justify your answer.
Solution: Observe that, for $y \neq 0$,

$$
\begin{aligned}
|f(x, y)| & =\left|x \sin \left(\frac{1}{y}\right)\right| \\
& =|x|\left|\sin \left(\frac{1}{y}\right)\right| \\
& \leqslant|x| \\
& \leqslant \sqrt{x^{2}+y^{2}}
\end{aligned}
$$

It then follows that, for $y \neq 0$,

$$
0 \leqslant|f(x, y)| \leqslant\|(x, y)\|
$$

Consequently, by the Squeeze Theorem,

$$
\lim _{\|(x, y)\| \rightarrow 0}|f(x, y)|=0
$$

This suggests that we define $L=0$. If this is the case,

$$
\lim _{\|(x, y)\| \rightarrow 0}|f(x, y)-f(0,0)|=0
$$

which shows that f is continuous at $(0,0)$ if $L=0$.

Assume now that $L=0$ in the definition of f. Then, for any $a \neq 0$, f fails for be continuous at $(a, 0)$. To see why this is case, note that for any $y \neq 0$

$$
|f(a, y)|=|a|\left|\sin \left(\frac{1}{y}\right)\right|
$$

and the limit of $\left|\sin \left(\frac{1}{y}\right)\right|$ as $y \rightarrow 0$ does not exist.
10. Define $G: \mathbb{R}^{2} \rightarrow \mathbb{R}$ by $G(x, y)=x y$ for all $(x, y) \in \mathbb{R}^{2}$. Prove that G is continuous on \mathbb{R}^{2}; that is, prove that

$$
\lim _{(x, y) \rightarrow\left(x_{o}, y_{o}\right)} G(x, y)=G\left(x_{o}, y_{o}\right) \quad \text { for all } \quad\left(x_{o}, y_{o}\right) \in \mathbb{R}^{2}
$$

or

$$
\lim _{(x, y) \rightarrow\left(x_{o}, y_{o}\right)}\left|G(x, y)-G\left(x_{o}, y_{o}\right)\right|=0 \quad \text { for all } \quad\left(x_{o}, y_{o}\right) \in \mathbb{R}^{2} .
$$

Proof: Using the triangle inequality we obtain

$$
\begin{aligned}
\left|G(x, y)-G\left(x_{o}, y_{o}\right)\right| & =\left|x y-x_{o} y_{o}\right| \\
& =\left|x y-x_{o} y+x_{o} y-x_{o} y_{o}\right| \\
& =\left|\left(x-x_{o}\right) y+x_{o}\left(y-y_{o}\right)\right| \\
& \leqslant\left|x-x_{o}\right||y|+\left|x_{o}\right|\left|y-y_{o}\right|
\end{aligned}
$$

Next, use the estimates

$$
\left|x-x_{o}\right| \leqslant\left\|(x, y)-\left(x_{o}, y_{o}\right)\right\|
$$

and

$$
\left|y-y_{o}\right| \leqslant\left\|(x, y)-\left(x_{o}, y_{o}\right)\right\|
$$

to obtain

$$
\left|G(x, y)-G\left(x_{o}, y_{o}\right)\right| \leqslant\left\|(x, y)-\left(x_{o}, y_{o}\right)\right\||y|+\left|x_{o}\right|\left\|(x, y)-\left(x_{o}, y_{o}\right)\right\|,
$$

or

$$
\left|G(x, y)-G\left(x_{o}, y_{o}\right)\right| \leqslant\left(|y|+\left|x_{o}\right|\right)\left\|(x, y)-\left(x_{o}, y_{o}\right)\right\| .
$$

Observe that

$$
\lim _{(x, y) \rightarrow\left(x_{o}, y_{o}\right)}|y|=\left|y_{o}\right|,
$$

which follows from the fact that the map $(x, y) \rightarrow y$ is continuous since it is a projection. Thus,

$$
\lim _{(x, y) \rightarrow\left(x_{o}, y_{o}\right)}\left(|y|+\left|x_{o}\right|\right)\left\|(x, y)-\left(x_{o}, y_{o}\right)\right\|=\left(\left|y_{o}\right|+\left|x_{o}\right|\right) \cdot 0=0
$$

Hence, from

$$
0 \leqslant\left|G(x, y)-G\left(x_{o}, y_{o}\right)\right| \leqslant\left(|y|+\left|x_{o}\right|\right)\left\|(x, y)-\left(x_{o}, y_{o}\right)\right\|
$$

and the Sandwich theorem, it follows that

$$
\lim _{(x, y) \rightarrow\left(x_{o}, y_{o}\right)}\left|G(x, y)-G\left(x_{o}, y_{o}\right)\right|=0
$$

which was to be shown.
11. Let U denote an open subset of \mathbb{R}^{2} and let $g: U \rightarrow \mathbb{R}$ be two scalar fields on U. Assume that $g\left(x_{o}, y_{o}\right) \neq 0$ for some $\left(x_{o}, y_{o}\right) \in U$. Prove that if g is continuous at $\left(x_{o}, y_{o}\right)$, then there exists $\delta>0$ such that $B_{\delta}\left(x_{o}, y_{o}\right) \subseteq U$ and

$$
(x, y) \in B_{\delta}\left(x_{o}, y_{o}\right) \Rightarrow|g(x, y)|>\frac{\left|g\left(x_{o}, y_{o}\right)\right|}{2}
$$

Suggestion: Consider $\varepsilon=\frac{\left|g\left(x_{o}, y_{o}\right)\right|}{2}>0$.
Solution: Since g is continuous at $\left(x_{o}, y_{o}\right)$, given $\varepsilon>0$, there exists $\delta>0$ such that $B_{\delta}\left(x_{o}, y_{o}\right) \subseteq U$ and

$$
(x, y) \in B_{\delta}\left(x_{o}, y_{o}\right) \Rightarrow\left|g(x, y)-g\left(x_{o}, y_{o}\right)\right|<\varepsilon
$$

Taking $\varepsilon=\frac{\left|g\left(x_{o}, y_{o}\right)\right|}{2}>0$, we get a δ such that $B_{\delta}\left(x_{o}, y_{o}\right) \subseteq U$ and

$$
(x, y) \in B_{\delta}\left(x_{o}, y_{o}\right) \Rightarrow\left|g(x, y)-g\left(x_{o}, y_{o}\right)\right|<\frac{\left|g\left(x_{o}, y_{o}\right)\right|}{2}
$$

Thus, by the triangle inequality,

$$
\left|g\left(x_{o}, y_{o}\right)\right|=\left|g\left(x_{o}, y_{o}\right)-g(x, y)+g(x, y)\right| \leqslant\left|g(x, y)-g\left(x_{o}, y_{o}\right)\right|+|g(x, y)| .
$$

It then follows that, if $(x, y) \in B_{\delta}\left(x_{o}, y_{o}\right)$, then

$$
\left|g\left(x_{o}, y_{o}\right)\right|<\frac{\left|g\left(x_{o}, y_{o}\right)\right|}{2}+|g(x, y)|
$$

from which we get that

$$
(x, y) \in B_{\delta}\left(x_{o}, y_{o}\right) \Rightarrow|g(x, y)|>\frac{\left|g\left(x_{o}, y_{o}\right)\right|}{2} .
$$

12. Let U, g and $\left(x_{o}, y_{o}\right)$ be as in the previous problem. Assume that $g\left(x_{o}, y_{o}\right) \neq 0$ and that g is continuous at $\left(x_{o}, y_{o}\right)$. Put

$$
h(x, y)=\frac{1}{g(x, y)}
$$

Prove that h is continuous at $\left(x_{o}, y_{o}\right)$.
Suggestion: Use the result of the previous problem and the Squeeze Theorem.
Solution: First observe that, since $g\left(x_{o}, y_{o}\right) \neq 0, h\left(x_{o}, y_{o}\right)$ is defined.
We want to show that

$$
\lim _{(x, y) \rightarrow\left(x_{o}, y_{o}\right)}\left|h(x, y)-h\left(x_{o}, y_{o}\right)\right|=\lim _{(x, y) \rightarrow\left(x_{o}, y_{o}\right)}\left|\frac{1}{g(x, y)}-\frac{1}{g\left(x_{o}, y_{o}\right)}\right|=0
$$

To show this, compute

$$
\left|\frac{1}{g(x, y)}-\frac{1}{g\left(x_{o}, y_{o}\right)}\right|
$$

Note that if we restrict (x, y) to lie in $B_{\delta}\left(x_{o}, y_{o}\right)$, where $\delta>0$ is as in the previous problem, then

$$
|g(x, y)| \geqslant \frac{\left|g\left(x_{o}, y_{o}\right)\right|}{2}
$$

by the result of the previous problem. We therefore get that, for $(x, y) \in B_{\delta}\left(x_{o}, y_{o}\right), g(x, y) \neq 0$ and

$$
\begin{aligned}
\left|\frac{1}{g(x, y)}-\frac{1}{g\left(x_{o}, y_{o}\right)}\right| & =\left|\frac{g\left(x_{o}, y_{o}\right)-g(x, y)}{g(x, y) g\left(x_{o}, y_{o}\right)}\right| \\
& =\frac{\left|g(x, y)-g\left(x_{o}, y_{o}\right)\right|}{|g(x, y)|\left|g\left(x_{o}, y_{o}\right)\right|} \\
& \leqslant \frac{2}{\left|g\left(x_{o}, y_{o}\right)\right|^{2}} \cdot\left|g(x, y)-g\left(x_{o}, y_{o}\right)\right|
\end{aligned}
$$

Thus, if $(x, y) \in B_{\delta}\left(x_{o}, y_{o}\right)$,

$$
0 \leqslant\left|h(x, y)-h\left(x_{o}, y_{o}\right)\right| \leqslant \frac{2}{\left|g\left(x_{o}, y_{o}\right)\right|^{2}} \cdot\left|g(x, y)-g\left(x_{o}, y_{o}\right)\right|
$$

where

$$
\lim _{(x, y) \rightarrow\left(x_{o}, y_{o}\right)}\left|g(x, y)-g\left(x_{o}, y_{o}\right)\right|=0
$$

since g is continuous at $\left(x_{o}, y_{o}\right)$. It then follows, by the Sandwich Theorem that

$$
\lim _{(x, y) \rightarrow\left(x_{o}, y_{o}\right)}\left|h(x, y)-h\left(x_{o}, y_{o}\right)\right|=0
$$

which was to be shown.

