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Solutions to Review Problems for Exam 1

1. Compute the (shortest) distance from the point P (4, 0,−7) in ℝ3 to the plane
given by

4x− y − 3z = 12.

Solution: The point Po(3, 0, 0) is in the plane. Let

w =
−−→
PoP =

⎛⎝ 1
0
−7

⎞⎠

The vector n =

⎛⎝ 4
−1
−3

⎞⎠ is orthogonal to the plane. To find the

shortest distance, d, from P to the plane, we compute the norm of
the orthogonal projection of w onto n; that is,

d = ∥P
n̂
(w)∥,

where

n̂ =
1√
26

⎛⎝ 4
−1
−3

⎞⎠ ,

a unit vector in the direction of n, and

P
n̂
(w) = (w ⋅ n̂)n̂.

It then follows that
d = ∣w ⋅ n̂∣,

where w ⋅ n̂ =
1√
26

(4 + 21) =
25√
26
. Hence, d =

25
√

26

26
≈ 4.9. □

2. Compute the (shortest) distance from the point P (4, 0,−7) in ℝ3 to the line
given by the parametric equations⎧⎨⎩

x = −1 + 4t,
y = −7t,
z = 2− t.
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Solution: The point Po(−1, 0, 2) is on the line. The vector

v =

⎛⎝ 4
−7
−1

⎞⎠
gives the direction of the line. Put

w =
−−→
PoP =

⎛⎝ 5
0
−9

⎞⎠ .

The vectors v and w determine a parallelogram whose area is the norm
of v times the shortest distance, d, from P to the line determined by
v at Po. We then have that

area(P (v, w)) = ∥v∥d,

from which we get that

d =
area(P (v, w))

∥v∥
.

On the other hand,

area(P (v, w)) = ∥v × w∥,

where

v × w =

∣∣∣∣∣∣
î ĵ k̂
4 −7 −1
5 0 −9

∣∣∣∣∣∣ = 63̂i+ 31ĵ + 35k̂.

Thus, ∥v × w∥ =
√

(63)2 + (31)2 + (35)2 =
√

6155 and therefore

d =

√
6155√
66
≈ 9.7.

□

3. Compute the area of the triangle whose vertices in ℝ3 are the points (1, 1, 0),
(2, 0, 1) and (0, 3, 1)
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Solution: Label the points Po(1, 1, 0), P1(2, 0, 1) and P2(0, 3, 1) and
define the vectors

v =
−−→
PoP1 =

⎛⎝ 1
−1

1

⎞⎠ and w =
−−→
PoP2 =

⎛⎝−1
2
1

⎞⎠ .

The area of the triangle determined by the points Po, P1 and P2 is
then half of the area of the parallelogram determined by the vectors
v and w. Thus,

area(△PoP1P2) =
1

2
∥v × w∥,

where

v × w =

∣∣∣∣∣∣
î ĵ k̂
1 −1 1
−1 2 1

∣∣∣∣∣∣ = −3̂i− 2ĵ + k̂.

Consequently, area(△PoP1P2) =
1

2

√
9 + 4 + 1 =

√
14

2
≈ 1.87. □

4. Let v and w be two vectors in ℝ3, and let � be a scalar. Show that the area of
the parallelogram determined by the vectors v and w + �v is the same as that
determined by v and w.

Solution: The area of the parallelogram determined by v and w+�v
is

area(P (v, w + �v)) = ∥v × (w + �v)∥,

where
v × (w + �v) = v × w + �v × v = v × w.

Consequently, area(P (v, w + �v)) = ∥v × w∥ = area(P (v, w)). □

5. Let û denote a unit vector in ℝn and Pû(v) denote the orthogonal projection
of v along the direction of û for any vector v ∈ ℝn. Use the Cauchy–Schwarz
inequality to prove that the map

v 7→ Pû(v) for all v ∈ ℝn

is a continuous map from ℝn to ℝn.
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Solution: Pû(v) = (v ⋅ û)û for all v ∈ ℝn. Consequently, for any
w, v ∈ ℝn,

Pû(w)− Pû(v) = (w ⋅ û)û− (v ⋅ û)û
= (w ⋅ û− v ⋅ û)û
= [(w − v) ⋅ û]û.

It then follows that

∥Pû(w)− Pû(v)∥ = ∣(w − v) ⋅ û∣,

since ∥û∥ = 1. Hence, by the Cauchy–Schwarz inequality,

∥Pû(w)− Pû(v)∥ ⩽ ∥w − v∥.

Applying the Squeeze Theorem we then get that

lim
∥w−v∥→0

∥Pû(w)− Pû(v)∥ = 0,

which shows that Pû is continuous at every v ∈ V . □

6. Let U ⊆ ℝn be open and F : U → ℝm be function satisfying

∥F (v)− F (w)∥ ⩽ K∥v − w∥� for all v, w ∈ U, (1)

and some positive constants K and �.

Prove that F is continuous on U .

Solution: Let u be any vector in u. Then, since U is open, there
exists r > 0 such that Br(u) ⊆ U . By the condition in (1), for any
v ∈ Br(u),

0 ⩽ ∥F (v)− F (u)∥ ⩽ K∥v − u∥�.

Now, since � > 0,
lim

∥v−u∥→0
∥v − u∥� = 0.

Consequently, by the Squeeze Theorem,

lim
∥v−u∥→0

∥F (v)− F (u)∥ = 0,

which shows that F is continuous at u. Since u was an arbitrary
element of U , we have shown that F is continuous on U . □
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7. Define f : ℝ2 → ℝ by

f(x, y) =

⎧⎨⎩
x2y

x2 + y2
if (x, y) ∕= (0, 0)

0 if (x, y) = (0, 0).

Prove that f is continuous at (0, 0).

Solution: For (x, y) ∕= (0, 0)

∣f(x, y)∣ =
x2∣y∣
x2 + y2

⩽ ∣y∣

⩽
√
x2 + y2.

We then have that, for (x, y) ∕= (0, 0),

0 ⩽ ∣f(x, y)− f(0, 0)∣ ⩽ ∥(x, y)− (0, 0)∥.

Thus, by the Squeeze Theorem,

lim
∥(x,y)−(0,0)∥→0

∣f(x, y)− f(0, 0)∣ = 0,

which shows that f is continuous at (0, 0). □

8. Show that

f(x, y) =

⎧⎨⎩
x2 − y2

x2 + y2
, (x, y) ∕= (0, 0)

0, (x, y) = (0, 0)

is not continuous at (0, 0).

Solution: Let " =
1

2
and observe that for any � > 0

f

(
�

2
, 0

)
= 1.

Thus, ∥∥∥∥(�2 , 0
)∥∥∥∥ =

�

2
< �,
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but ∣∣∣∣f (�2 , 0
)
− f(0, 0)

∣∣∣∣ = 1 >
1

2
= ".

Hence, f is not continuous at (0, 0). □

9. Determine the value of L that would make the function

f(x, y) =

⎧⎨⎩
x sin

(
1

y

)
if y ∕= 0;

L otherwise ,

continuous at (0, 0). Is f : ℝ2 → ℝ continuous on ℝ2? Justify your answer.

Solution: Observe that, for y ∕= 0,

∣f(x, y)∣ =

∣∣∣∣x sin

(
1

y

)∣∣∣∣
= ∣x∣

∣∣∣∣sin(1

y

)∣∣∣∣
⩽ ∣x∣

⩽
√
x2 + y2.

It then follows that, for y ∕= 0,

0 ⩽ ∣f(x, y)∣ ⩽ ∥(x, y)∥.

Consequently, by the Squeeze Theorem,

lim
∥(x,y)∥→0

∣f(x, y)∣ = 0.

This suggests that we define L = 0. If this is the case,

lim
∥(x,y)∥→0

∣f(x, y)− f(0, 0)∣ = 0,

which shows that f is continuous at (0, 0) if L = 0.
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Assume now that L = 0 in the definition of f . Then, for any a ∕= 0,
f fails for be continuous at (a, 0). To see why this is case, note that
for any y ∕= 0

∣f(a, y)∣ = ∣a∣
∣∣∣∣sin(1

y

)∣∣∣∣
and the limit of

∣∣∣∣sin(1

y

)∣∣∣∣ as y → 0 does not exist. □

10. Define G : ℝ2 → ℝ by G(x, y) = xy for all (x, y) ∈ ℝ2. Prove that G is
continuous on ℝ2; that is, prove that

lim
(x,y)→(xo,yo)

G(x, y) = G(xo, yo) for all (xo, yo) ∈ ℝ2

or
lim

(x,y)→(xo,yo)
∣G(x, y)−G(xo, yo)∣ = 0 for all (xo, yo) ∈ ℝ2.

Proof: Using the triangle inequality we obtain

∣G(x, y)−G(xo, yo)∣ = ∣xy − xoyo∣

= ∣xy − xoy + xoy − xoyo∣

= ∣(x− xo)y + xo(y − yo)∣

⩽ ∣x− xo∣ ∣y∣+ ∣xo∣ ∣y − yo∣.

Next, use the estimates

∣x− xo∣ ⩽ ∥(x, y)− (xo, yo)∥

and
∣y − yo∣ ⩽ ∥(x, y)− (xo, yo)∥

to obtain

∣G(x, y)−G(xo, yo)∣ ⩽ ∥(x, y)− (xo, yo)∥ ∣y∣+ ∣xo∣ ∥(x, y)− (xo, yo)∥,

or
∣G(x, y)−G(xo, yo)∣ ⩽ (∣y∣+ ∣xo∣) ∥(x, y)− (xo, yo)∥.

Observe that
lim

(x,y)→(xo,yo)
∣y∣ = ∣yo∣,
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which follows from the fact that the map (x, y) → y is continuous since it is a
projection. Thus,

lim
(x,y)→(xo,yo)

(∣y∣+ ∣xo∣) ∥(x, y)− (xo, yo)∥ = (∣yo∣+ ∣xo∣) ⋅ 0 = 0,

Hence, from

0 ⩽ ∣G(x, y)−G(xo, yo)∣ ⩽ (∣y∣+ ∣xo∣) ∥(x, y)− (xo, yo)∥,

and the Sandwich theorem, it follows that

lim
(x,y)→(xo,yo)

∣G(x, y)−G(xo, yo)∣ = 0,

which was to be shown.

11. Let U denote an open subset of ℝ2 and let g : U → ℝ be two scalar fields on U .
Assume that g(xo, yo) ∕= 0 for some (xo, yo) ∈ U . Prove that if g is continuous
at (xo, yo), then there exists � > 0 such that B�(xo, yo) ⊆ U and

(x, y) ∈ B�(xo, yo)⇒ ∣g(x, y)∣ > ∣g(xo, yo)∣
2

.

Suggestion: Consider " =
∣g(xo, yo)∣

2
> 0.

Solution: Since g is continuous at (xo, yo), given " > 0, there exists
� > 0 such that B�(xo, yo) ⊆ U and

(x, y) ∈ B�(xo, yo)⇒ ∣g(x, y)− g(xo, yo)∣ < ".

Taking " =
∣g(xo, yo)∣

2
> 0, we get a � such that B�(xo, yo) ⊆ U and

(x, y) ∈ B�(xo, yo)⇒ ∣g(x, y)− g(xo, yo)∣ <
∣g(xo, yo)∣

2
.

Thus, by the triangle inequality,

∣g(xo, yo)∣ = ∣g(xo, yo)−g(x, y)+g(x, y)∣ ⩽ ∣g(x, y)−g(xo, yo)∣+∣g(x, y)∣.

It then follows that, if (x, y) ∈ B�(xo, yo), then

∣g(xo, yo)∣ <
∣g(xo, yo)∣

2
+ ∣g(x, y)∣,
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from which we get that

(x, y) ∈ B�(xo, yo)⇒ ∣g(x, y)∣ > ∣g(xo, yo)∣
2

.

□

12. Let U , g and (xo, yo) be as in the previous problem. Assume that g(xo, yo) ∕= 0
and that g is continuous at (xo, yo). Put

ℎ(x, y) =
1

g(x, y)
.

Prove that ℎ is continuous at (xo, yo).

Suggestion: Use the result of the previous problem and the Squeeze Theorem.

Solution: First observe that, since g(xo, yo) ∕= 0, ℎ(xo, yo) is defined.

We want to show that

lim
(x,y)→(xo,yo)

∣ℎ(x, y)− ℎ(xo, yo)∣ = lim
(x,y)→(xo,yo)

∣∣∣∣ 1

g(x, y)
− 1

g(xo, yo)

∣∣∣∣ = 0.

To show this, compute ∣∣∣∣ 1

g(x, y)
− 1

g(xo, yo)

∣∣∣∣ .
Note that if we restrict (x, y) to lie in B�(xo, yo), where � > 0 is as in
the previous problem, then

∣g(x, y)∣ ⩾ ∣g(xo, yo)∣
2

,

by the result of the previous problem. We therefore get that, for
(x, y) ∈ B�(xo, yo), g(x, y) ∕= 0 and∣∣∣∣ 1

g(x, y)
− 1

g(xo, yo)

∣∣∣∣ =

∣∣∣∣g(xo, yo)− g(x, y)

g(x, y)g(xo, yo)

∣∣∣∣
=
∣g(x, y)− g(xo, yo)∣
∣g(x, y)∣ ∣g(xo, yo)∣

⩽
2

∣g(xo, yo)∣2
⋅ ∣g(x, y)− g(xo, yo)∣.
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Thus, if (x, y) ∈ B�(xo, yo),

0 ⩽ ∣ℎ(x, y)− ℎ(xo, yo)∣ ⩽
2

∣g(xo, yo)∣2
⋅ ∣g(x, y)− g(xo, yo)∣,

where
lim

(x,y)→(xo,yo)
∣g(x, y)− g(xo, yo)∣ = 0,

since g is continuous at (xo, yo). It then follows, by the Sandwich
Theorem that

lim
(x,y)→(xo,yo)

∣ℎ(x, y)− ℎ(xo, yo)∣ = 0,

which was to be shown. □


