## Exam 2

October 28, 2009
Name: $\qquad$
This is a closed book exam. Show all significant work and justify all your answers. Use your own paper and/or the paper provided by the instructor. You have 75 minutes to work on the following 6 problems. Relax.

1. Let $U$ denote an open subset of $\mathbb{R}^{n}$, and let $F: U \rightarrow \mathbb{R}^{m}$ be a vector field on $U$.
(a) State precisely what it means for $F$ to be differentiable at $u \in U$.
(b) Suppose that a vector field $F: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is a linear map. Prove that $F$ is differentiable at every $u \in U$, and compute its derivative map,

$$
D F(u): \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}
$$

at $u$, for all $u \in \mathbb{R}^{n}$.
2. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ denote the scalar field on $\mathbb{R}^{2}$ defined by

$$
f(x, y)=x^{2 / 3} y^{1 / 3} \quad \text { for all } \quad(x, y) \in \mathbb{R}^{2}
$$

(a) Show that the partial derivatives of $f$ at $(0,0)$ exist and compute them.
(b) Show that $f$ is not differentiable at $(0,0)$.
3. For fixed vectors $v$ and $u$ in $\mathbb{R}^{n}$, define $\sigma: \mathbb{R} \rightarrow \mathbb{R}^{n}$ by

$$
\sigma(t)=u+t v \quad \text { for all } t \in \mathbb{R}
$$

Prove that $\sigma$ is differentiable at every $t \in \mathbb{R}$ and compute its derivative map, $D \sigma(t)$, for all $t \in \mathbb{R}$
4. Let $I$ denote an open interval of real numbers and define $\sigma: I \rightarrow \mathbb{R}^{2}$ by

$$
\sigma(t)=(x(t), y(t)) \quad \text { for all } t \in I
$$

where $x(t)$ and $y(t)$ are real valued functions of $t \in I$.
Prove that $\sigma$ is differentiable at $t \in I$ if and only if both $x$ and $y$ are differentiable at $t \in I$. Furthermore, $D \sigma(t) h=h\left(x^{\prime}(t), y^{\prime}(t)\right) \quad$ for all $h \in \mathbb{R}$.
5. Let $U$ denote an open subset of $\mathbb{R}^{n}$ and $Q$ an open subset of $\mathbb{R}^{m}$. Consider the maps $F: U \rightarrow \mathbb{R}^{m}$ and $G: Q \rightarrow \mathbb{R}^{k}$.
(a) State the Chain Rule in the context of the functions $F$ and $G$ and the open sets given above. Be explicit as to what your assumptions and conclusions are.
(b) Use the Chain Rule to prove the following: If $f$ is a differentiable scalar field on an open set $U \in \mathbb{R}^{n}$ and $\sigma: I \rightarrow \mathbb{R}^{n}$ is a differentiable path such that $\sigma(I) \subseteq U$, then the function $g: I \rightarrow \mathbb{R}$ defined by

$$
g(t)=f(\sigma(t)) \quad \text { for all } t \in I
$$

is differentiable on $I$. Give a formula for computing $g^{\prime}(t)$ for all $t \in I$ in terms of the gradient of $f$ and $\sigma^{\prime}(t)$.
(c) Use your result from the previous part to prove that, if $f$ is differentiable at $u \in U$, then the limit

$$
\lim _{t \rightarrow 0} \frac{f(u+t \widehat{v})-f(u)}{t}
$$

where $\widehat{v}$ denotes a unit vector, exists. Give an interpretation to your result.
(d) Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be given by $f(x, y)=3 x y-y^{2}$ for all $(x, y) \in \mathbb{R}^{2}$. Compute the gradient of $f$ at the point $(2,1)$, and find a direction, $\widehat{v}$, along which $f$ is increasing the fastest at $(2,1)$. Justify your result.
6. Let $f$ be a scalar field in $\mathbb{R}^{n}$ defined by $f(v)=\|v\|^{2}$ for all $v \in \mathbb{R}^{n}$.
(a) Prove that $f$ is differentiable on $\mathbb{R}^{n}$ and use this fact to prove that the function $g: I \rightarrow \mathbb{R}$ defined by

$$
g(t)=\|\sigma(t)\|^{2}, \quad \text { for all } t \in I
$$

where the path $\sigma$ is differentiable on an open interval $I$, is differentiable and compute $g^{\prime}(t)$.
(b) Let $g$ be the function defined in part (a) above. Prove that if $g$ has a critical point at $t_{o} \in I$, then $\sigma\left(t_{o}\right)$ and $\sigma^{\prime}\left(t_{o}\right)$ are orthogonal (or perpendicular) to each other.
(c) Find the point (or points) along the path in $\mathbb{R}^{2}$ given by

$$
\sigma(t)=\left(t, t^{2}-1\right), \quad \text { for } t \in \mathbb{R}
$$

which are the closest to the origin $(0,0)$ in $\mathbb{R}^{2}$.

