Exam 2

October 28, 2009

Name: _____

This is a closed book exam. Show all significant work and justify all your answers. Use your own paper and/or the paper provided by the instructor. You have 75 minutes to work on the following 6 problems. Relax.

- 1. Let U denote an open subset of \mathbb{R}^n , and let $F: U \to \mathbb{R}^m$ be a vector field on U.
 - (a) State precisely what it means for F to be differentiable at $u \in U$.
 - (b) Suppose that a vector field $F \colon \mathbb{R}^n \to \mathbb{R}^m$ is a linear map. Prove that F is differentiable at every $u \in U$, and compute its derivative map,

$$DF(u) \colon \mathbb{R}^n \to \mathbb{R}^m,$$

at u, for all $u \in \mathbb{R}^n$.

2. Let $f: \mathbb{R}^2 \to \mathbb{R}$ denote the scalar field on \mathbb{R}^2 defined by

$$f(x, y) = x^{2/3}y^{1/3}$$
 for all $(x, y) \in \mathbb{R}^2$.

- (a) Show that the partial derivatives of f at (0,0) exist and compute them.
- (b) Show that f is not differentiable at (0,0).
- 3. For fixed vectors v and u in \mathbb{R}^n , define $\sigma \colon \mathbb{R} \to \mathbb{R}^n$ by

$$\sigma(t) = u + tv \quad \text{for all } t \in \mathbb{R}.$$

Prove that σ is differentiable at every $t \in \mathbb{R}$ and compute its derivative map, $D\sigma(t)$, for all $t \in \mathbb{R}$

4. Let I denote an open interval of real numbers and define $\sigma: I \to \mathbb{R}^2$ by

$$\sigma(t) = (x(t), y(t)) \quad \text{for all } t \in I,$$

where x(t) and y(t) are real valued functions of $t \in I$.

Prove that σ is differentiable at $t \in I$ if and only if both x and y are differentiable at $t \in I$. Furthermore, $D\sigma(t)h = h(x'(t), y'(t))$ for all $h \in \mathbb{R}$.

- 5. Let U denote an open subset of \mathbb{R}^n and Q an open subset of \mathbb{R}^m . Consider the maps $F: U \to \mathbb{R}^m$ and $G: Q \to \mathbb{R}^k$.
 - (a) State the Chain Rule in the context of the functions F and G and the open sets given above. Be explicit as to what your assumptions and conclusions are.
 - (b) Use the Chain Rule to prove the following: If f is a differentiable scalar field on an open set $U \in \mathbb{R}^n$ and $\sigma: I \to \mathbb{R}^n$ is a differentiable path such that $\sigma(I) \subseteq U$, then the function $g: I \to \mathbb{R}$ defined by

$$g(t) = f(\sigma(t)) \quad \text{for all } t \in I,$$

is differentiable on I. Give a formula for computing g'(t) for all $t \in I$ in terms of the gradient of f and $\sigma'(t)$.

(c) Use your result from the previous part to prove that, if f is differentiable at $u \in U$, then the limit

$$\lim_{t \to 0} \frac{f(u+t\widehat{v}) - f(u)}{t},$$

where \hat{v} denotes a unit vector, exists. Give an interpretation to your result.

- (d) Let $f : \mathbb{R}^2 \to \mathbb{R}$ be given by $f(x, y) = 3xy y^2$ for all $(x, y) \in \mathbb{R}^2$. Compute the gradient of f at the point (2, 1), and find a direction, \hat{v} , along which f is increasing the fastest at (2, 1). Justify your result.
- 6. Let f be a scalar field in \mathbb{R}^n defined by $f(v) = ||v||^2$ for all $v \in \mathbb{R}^n$.
 - (a) Prove that f is differentiable on \mathbb{R}^n and use this fact to prove that the function $g: I \to \mathbb{R}$ defined by

$$g(t) = \|\sigma(t)\|^2$$
, for all $t \in I$,

where the path σ is differentiable on an open interval I, is differentiable and compute g'(t).

- (b) Let g be the function defined in part (a) above. Prove that if g has a critical point at $t_o \in I$, then $\sigma(t_o)$ and $\sigma'(t_o)$ are orthogonal (or perpendicular) to each other.
- (c) Find the point (or points) along the path in \mathbb{R}^2 given by

$$\sigma(t) = (t, t^2 - 1), \quad \text{for } t \in \mathbb{R},$$

which are the closest to the origin (0,0) in \mathbb{R}^2 .