Solutions to Review Problems for Exam 2

1. Define the scalar field $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ by $f(v)=\frac{1}{2}\|v\|^{2}$ for all $v \in \mathbb{R}^{n}$. Show that f is differentiable on \mathbb{R}^{n} and compute the linear map $D f(u): \mathbb{R}^{n} \rightarrow \mathbb{R}$ for all $u \in \mathbb{R}^{n}$. What is the gradient of f at u for all $x \in \mathbb{R}^{n}$?

Solution: Let u and w be any vector in \mathbb{R}^{n} and consider

$$
\begin{aligned}
f(u+w) & =\frac{1}{2}\|u+w\|^{2} \\
& =\frac{1}{2}(u+w) \cdot(u+w) \\
& =\frac{1}{2} u \cdot u+u \cdot w+\frac{1}{2} w \cdot w \\
& =\frac{1}{2}\|u\|^{2}+u \cdot w+\frac{1}{2}\|w\|^{2}
\end{aligned}
$$

Thus,

$$
f(u+w)-f(u)-u \cdot w=\frac{1}{2}\|w\|^{2} .
$$

Consequently,

$$
\frac{|f(u+w)-f(u)-u \cdot w|}{\|w\|}=\frac{1}{2}\|w\|,
$$

from which we get that

$$
\lim _{\|w\| \rightarrow 0} \frac{|f(u+w)-f(u)-u \cdot w|}{\|w\|}=0
$$

and therefore f is differentiable at u with derivative map $D f(u)$ given by

$$
D f(u) w=u \cdot w \quad \text { for all } w \in \mathbb{R}^{n}
$$

Hence, $\nabla f(u)=u$ for all $u \in \mathbb{R}^{n}$.
2. Let $g:[0, \infty) \rightarrow \mathbb{R}$ be a differentiable, real-valued function of a single variable, and let $f(x, y)=g(r)$ where $r=\sqrt{x^{2}+y^{2}}$.
(a) Compute $\frac{\partial r}{\partial x}$ in terms of x and r, and $\frac{\partial r}{\partial y}$ in terms of y and r.

Solution: Take the partial derivative of $r^{2}=x^{2}+y^{2}$ on both sides with respect to x to obtain

$$
\frac{\partial\left(r^{2}\right)}{\partial x}=2 x
$$

Applying the chain rule on the left-hand side we get

$$
2 r \frac{\partial r}{\partial x}=2 x
$$

which leads to

$$
\frac{\partial r}{\partial x}=\frac{x}{r}
$$

Similarly, $\frac{\partial r}{\partial y}=\frac{y}{r}$.
(b) Compute ∇f in terms of $g^{\prime}(r), r$ and the vector $\mathbf{r}=x \widehat{i}+y \widehat{j}$.

Solution: Take the partial derivative of $f(x, y)=g(r)$ on both sides with respect to x and apply the Chain Rule to obtain

$$
\frac{\partial f}{\partial x}=g^{\prime}(r) \frac{\partial r}{\partial x}=g^{\prime}(r) \frac{x}{r}
$$

Similarly, $\frac{\partial f}{\partial y}=g^{\prime}(r) \frac{y}{r}$.
It then follows that

$$
\begin{aligned}
\nabla f & =\frac{\partial f}{\partial x} \widehat{i}+\frac{\partial f}{\partial y} \widehat{j} \\
& =g^{\prime}(r) \frac{x}{r} \widehat{i}+g^{\prime}(r) \frac{y}{r} \widehat{j} \\
& =\frac{g^{\prime}(r)}{r}(\widehat{x}+y \widehat{j}) \\
& =\frac{g^{\prime}(r)}{r} \mathbf{r} .
\end{aligned}
$$

3. Let $f: U \rightarrow \mathbb{R}$ denote a scalar field defined on an open subset U of \mathbb{R}^{n}, and let \widehat{u} be a unit vector in \mathbb{R}^{n}. If the limit

$$
\lim _{t \rightarrow 0} \frac{f(v+t \widehat{u})-f(v)}{t}
$$

exists, we call it the directional derivative of f at v in the direction of the unit vector \widehat{u}. We denote it by $D_{\widehat{u}} f(v)$.
(a) Show that if f is differentiable at $v \in U$, then, for any unit vector \widehat{u} in \mathbb{R}^{n}, the directional derivative of f in the direction of \widehat{u} at v exists, and

$$
D_{\widehat{u}} f(v)=\nabla f(v) \cdot \widehat{u},
$$

where $\nabla f(v)$ is the gradient of f at v.
Proof: Suppose that f is differentiable at $v \in U$. Then,

$$
f(v+w)=f(v)+D f(v) w+E(w)
$$

where

$$
D f(v) w=\nabla f(v) \cdot w
$$

and

$$
\lim _{\|w\| \rightarrow 0} \frac{|E(w)|}{\|w\|}=0
$$

Thus, for any $t \in \mathbb{R}$,

$$
f(v+t \widehat{u})=f(v)+t \nabla f(v) \cdot \widehat{u}+E(t \widehat{u}),
$$

where

$$
\lim _{|t| \rightarrow 0} \frac{|E(t \widehat{u})|}{|t|}=0
$$

since $\|t \widehat{u}\|=|t|\|\widehat{u}\|=|t|$.
We then have that, for $t \neq 0$,

$$
\frac{f(v+t \widehat{u})-f(v)}{t}-\nabla f(v) \cdot \widehat{u}=\frac{E(t \widehat{u})}{t}
$$

and consequently

$$
\left|\frac{f(v+t \widehat{u})-f(v)}{t}-\nabla f(v) \cdot \widehat{u}\right|=\frac{|E(t \widehat{u})|}{|t|},
$$

from which we get that

$$
\lim _{t \rightarrow 0}\left|\frac{f(v+t \widehat{u})-f(v)}{t}-\nabla f(v) \cdot \widehat{u}\right|=0
$$

(b) Suppose that $f: U \rightarrow \mathbb{R}$ is differentiable at $v \in U$. Prove that if $D_{\widehat{u}} f(v)=$ 0 for every unit vector \widehat{u} in \mathbb{R}^{n}, then $\nabla f(v)$ must be the zero vector.

Proof: Suppose, by way of contradiction, that $\nabla f(v) \neq \mathbf{0}$, and put

$$
\widehat{u}=\frac{1}{\|\nabla f(v)\|} \nabla f(v) .
$$

Then, \widehat{u} is a unit vector, and therefore, by the assumption,

$$
D_{\widehat{u}} f(v)=0
$$

or

$$
\nabla f(v) \cdot \widehat{u}=0
$$

But this implies that

$$
\nabla f(v) \cdot \frac{1}{\|\nabla f(v)\|} \nabla f(v)=0
$$

where

$$
\begin{aligned}
\nabla f(v) \cdot \frac{1}{\|\nabla f(v)\|} \nabla f(v) & =\frac{1}{\|\nabla f(v)\|} \nabla f(v) \cdot \nabla f(v) \\
& =\frac{1}{\|\nabla f(v)\|}\|\nabla f(v)\|^{2} \\
& =\|\nabla f(v)\| .
\end{aligned}
$$

It then follows that $\|\nabla f(v)\|=0$, which contradicts the assumption that $\nabla f(v) \neq \mathbf{0}$. Therefore, $\nabla f(v)$ must be the zero vector.
(c) Suppose that $f: U \rightarrow \mathbb{R}$ is differentiable at $v \in U$. Use the CauchySchwarz inequality to show that the largest value of $D_{\widehat{u}} f(v)$ is $\|\nabla f(v)\|$ and it occurs when \widehat{u} is in the direction of $\nabla f(v)$.

Proof. If f is differentiable at x, then $D_{\widehat{u}} f(x)=\nabla f(x) \cdot \widehat{u}$, as was shown in part (a). Thus, by the Cauchy-Schwarz inequality,

$$
\left|D_{\widehat{u}} f(x)\right| \leqslant\|\nabla f(x)\|\|\widehat{u}\|=\|\nabla f(x)\|,
$$

since \widehat{u} is a unit vector. Hence,

$$
-\|\nabla f(x)\| \leqslant D_{\widehat{u}} f(x) \leqslant\|\nabla f(x)\|
$$

for any unit vector \widehat{u}, and so the largest value that $D_{\widehat{u}} f(x)$ can have is $\|\nabla f(x)\|$.
If $\nabla f(x) \neq \mathbf{0}$, then $\widehat{u}=\frac{1}{\|\nabla f(x)\|} \nabla f(x)$ is a unit vector, and

$$
\begin{aligned}
D_{\widehat{u}} f(x) & =\nabla f(x) \cdot \widehat{u} \\
& =\nabla f(x) \cdot \frac{1}{\|\nabla f(x)\|} \nabla f(x) \\
& =\frac{1}{\|\nabla f(x)\|} \nabla f(x) \cdot \nabla f(x) \\
& =\frac{1}{\|\nabla f(x)\|}\|\nabla f(x)\|^{2} \\
& =\|\nabla f(x)\| .
\end{aligned}
$$

Thus, $D_{\widehat{u}} f(x)$ attains its largest value when \widehat{u} is in the direction of $\nabla f(x)$.
4. The scalar field $f: U \rightarrow \mathbb{R}$ is said to have a local minimum at $x \in U$ if there exists $r>0$ such that $B_{r}(x) \subseteq U$ and

$$
f(x) \leqslant f(y) \text { for every } y \in B_{r}(x)
$$

Prove that if f is differentiable at $x \in U$ and f has a local minimum at x, then $\nabla f(x)=\mathbf{0}$, the zero vector in \mathbb{R}^{n}.

Proof. Let \widehat{u} be a unit vector and $t \in \mathbb{R}$ be such that $|t|<r$; then,

$$
f(x+t \widehat{u}) \geqslant f(x),
$$

from which we get that

$$
f(x+t \widehat{u})-f(x) \geqslant 0
$$

Dividing by $t>0$ we then have that

$$
\frac{f(x+t \widehat{u})-f(x)}{t} \geqslant 0
$$

Thus, letting $t \rightarrow 0^{+}$, we get that

$$
\begin{equation*}
D_{\widehat{u}} f(x) \geqslant 0 \tag{1}
\end{equation*}
$$

since f is differentiable at x. Similarly, dividing by $t<0$, we have

$$
\frac{f(x+t \widehat{u})-f(x)}{t} \leqslant 0
$$

from which we obtain, letting $t \rightarrow 0^{-}$, that

$$
\begin{equation*}
D_{\widehat{u}} f(x) \leqslant 0 \tag{2}
\end{equation*}
$$

Combining (1) and (2) we then have that

$$
D_{\widehat{u}} f(x)=0,
$$

where \widehat{u} is an arbitrary unit vector. It then follows from the previous problem that $\nabla f(x)=\mathbf{0}$.
5. Let I denote an open interval in \mathbb{R}. Suppose that $\sigma: I \rightarrow \mathbb{R}^{n}$ and $\gamma: I \rightarrow \mathbb{R}^{n}$ are paths in \mathbb{R}^{n}. Define a real valued function $f: I \rightarrow \mathbb{R}$ of a single variable by

$$
f(t)=\sigma(t) \cdot \gamma(t) \quad \text { for all } t \in I
$$

that is, $f(t)$ is the dot product of the two paths at t.
Show that if σ and γ are both differentiable on I, then so is f, and

$$
f^{\prime}(t)=\sigma^{\prime}(t) \cdot \gamma(t)+\sigma(t) \cdot \gamma^{\prime}(t) \quad \text { for all } t \in I
$$

Solution: Let $t \in I$ and assume that both σ and γ are differentiable at t. Then,

$$
\sigma(t+h)=\sigma(t)+h \sigma^{\prime}(t)+E_{1}(h), \quad \text { for } \quad|h| \text { sufficiently small },
$$

where

$$
\begin{equation*}
\lim _{h \rightarrow 0} \frac{\left\|E_{1}(h)\right\|}{|h|}=0 \tag{3}
\end{equation*}
$$

Similarly,

$$
\gamma(t+h)=\gamma(t)+h \gamma^{\prime}(t)+E_{2}(h), \quad \text { for } \quad|h| \text { sufficiently small },
$$

where

$$
\begin{equation*}
\lim _{h \rightarrow 0} \frac{\left\|E_{2}(h)\right\|}{|h|}=0 \tag{4}
\end{equation*}
$$

It then follows that, for $|h|$ sufficiently small,

$$
\begin{aligned}
f(t+h)= & \sigma(t+h) \cdot \gamma(t+h) \\
= & \left(\sigma(t)+h \sigma^{\prime}(t)+E_{1}(h)\right) \cdot\left(\gamma(t)+h \gamma^{\prime}(t)+E_{2}(h)\right) \\
= & \left.\sigma(t) \cdot \gamma(t)+h \sigma(t) \cdot \gamma^{\prime}(t)+\sigma(t) \cdot E_{2}(h)\right)+h \sigma^{\prime}(t) \cdot \gamma(t) \\
& +h^{2} \sigma^{\prime}(t) \cdot \gamma^{\prime}(t)+h \sigma^{\prime}(t) \cdot E_{2}(h)+E_{1}(h) \cdot \gamma(t) \\
& +h E_{1}(h) \cdot \gamma^{\prime}(t)+E_{1}(h) \cdot E_{2}(h) \\
= & f(t)+h\left[\sigma(t) \cdot \gamma^{\prime}(t)+\sigma^{\prime}(t) \cdot \gamma(t)\right]+h^{2} \sigma^{\prime}(t) \cdot \gamma^{\prime}(t) \\
& \left.+\sigma(t) \cdot E_{2}(h)\right)+h \sigma^{\prime}(t) \cdot E_{2}(h)+E_{1}(h) \cdot \gamma(t) \\
& +h E_{1}(h) \cdot \gamma^{\prime}(t)+E_{1}(h) \cdot E_{2}(h)
\end{aligned}
$$

Rearranging terms and dividing by $h \neq 0$ and $|h|$ small enough, we then have that

$$
\begin{aligned}
\frac{f(t+h)-f(t)}{h}= & \sigma(t) \cdot \gamma^{\prime}(t)+\sigma^{\prime}(t) \cdot \gamma(t)++h \sigma^{\prime}(t) \cdot \gamma^{\prime}(t) \\
& +\sigma(t) \cdot \frac{E_{2}(h)}{h}+\sigma^{\prime}(t) \cdot E_{2}(h)+\frac{E_{1}(h)}{h} \cdot \gamma(t) \\
& +E_{1}(h) \cdot \gamma^{\prime}(t)+E_{1}(h) \cdot \frac{E_{2}(h)}{h}
\end{aligned}
$$

Observe that, as $h \rightarrow 0$, all the terms on the right hand side of the previous expression which involve E_{1} or E_{2} go to 0 , by virtue of the Cauchy-Schwarz inequality and (3) and (4). Therefore, we obtain that

$$
\lim _{h \rightarrow 0} \frac{f(t+h)-f(t)}{h}=\sigma(t) \cdot \gamma^{\prime}(t)+\sigma^{\prime}(t) \cdot \gamma(t)
$$

Hence, f is differentiable at t, and its derivative at t is

$$
f^{\prime}(t)=\sigma(t) \cdot \gamma^{\prime}(t)+\sigma^{\prime}(t) \cdot \gamma(t)
$$

Since t is an arbitrary element of I, the result follows.
6. Let $\sigma: I \rightarrow \mathbb{R}^{n}$ denote a differentiable path in \mathbb{R}^{n}. Show that if $\|\sigma(t)\|$ is constant for all $t \in I$, then $\sigma^{\prime}(t)$ is orthogonal to $\sigma(t)$ for all $t \in I$.

Solution: Let $\|\sigma(t)\|=c$, where c denotes a constant. Then,

$$
\|\sigma(t)\|^{2}=c^{2}
$$

or

$$
\sigma(t) \cdot \sigma(t)=c^{2} .
$$

Differentiating with respect to t on both sides, and using the result of the previous problem, we obtain that

$$
\sigma(t) \cdot \sigma^{\prime}(t)+\sigma^{\prime}(t) \cdot \sigma(t)=0
$$

or, by the symmetry of the dot-product,

$$
2 \sigma^{\prime}(t) \cdot \sigma(t)=0
$$

or

$$
\sigma^{\prime}(t) \cdot \sigma(t)=0
$$

Hence, $\sigma^{\prime}(t)$ is orthogonal to $\sigma(t)$ for all $t \in I$.
7. A particle is following a path in three-dimensional space given by

$$
\sigma(t)=\left(e^{t}, e^{-t}, 1-t\right) \quad \text { for } \quad t \in \mathbb{R}
$$

At time $t_{o}=1$, the particle flies off on a tangent.
(a) Where will the particle be at time $t_{1}=2$?

Solution: Find the tangent line to the path at $\sigma(1)$:

$$
\vec{r}(t)=\sigma(1)+(t-1) \sigma^{\prime}(1)
$$

where

$$
\sigma^{\prime}(t)=\left(e^{t},-e^{-t},-1\right) \quad \text { for } \quad t \in \mathbb{R}
$$

Then,

$$
\vec{r}(t)=(e, 1 / e, 0)+(t-1)(e,-1 / e,-1) .
$$

The parametric equations of the tangent line then are

$$
\left\{\begin{array}{l}
x=e+e(t-1) \\
y=1 / e-(t-1) / e \\
z=1-t
\end{array}\right.
$$

When $t=2$, the particle will be at the point in \mathbb{R}^{3} with coordinates

$$
(2 e, 0,-1)
$$

(b) Will the particle ever hit the $x y$-plane? Is so, find the location on the $x y$ plane where the particle hits.

Answer: The particle leaves the path at the point with coordinates $(e, 1 / e, 0)$ on the $x y$-plane. After that, it doesn't come back to it.
8. Let U denote an open and convex subset of \mathbb{R}^{n}. Suppose that $f: U \rightarrow \mathbb{R}$ is differentiable at every $x \in U$. Fix x and y in U, and define $g:[0,1] \rightarrow \mathbb{R}$ by

$$
g(t)=f(x+t(y-x)) \text { for } 0 \leqslant t \leqslant 1
$$

(a) Explain why the function g is well defined.

Solution: Since U is convex, $x+t(y-x)$ is in U for $0 \leqslant t \leqslant 1$. Thus, $f(x+t(y-x))$ is defined for $t \in[0,1]$.
(b) Show that g is differentiable on $(0,1)$ and that

$$
g^{\prime}(t)=\nabla f(x+t(y-x)) \cdot(y-x) \quad \text { for } \quad 0<t<1
$$

Solution: Apply the Chain Rule to the maps $f: U \rightarrow \mathbb{R}$ and $\sigma:(0,1) \rightarrow \mathbb{R}^{n}$ given by

$$
\sigma(t)=x+t(y-x) \quad \text { for } \quad t \in(0,1)
$$

Since U is convex, it follows that $\sigma(t) \in U$ for all $t \in(0,1)$. Consequently, $\sigma((0,1)) \subseteq U$ and therefore $f \circ \sigma:(0,1) \rightarrow \mathbb{R}$ is defined. Furthermore, by the Chain Rule, $f \circ \sigma$ is differentiable with
$D(f \circ \sigma)(t)=D f(\sigma(t)) D \sigma(t)=\nabla f(\sigma(t)) \cdot \sigma^{\prime}(t) \quad$ for all $t \in(0,1)$.
Note that $g=f \circ \sigma$ and $\sigma^{\prime}(t)=y-x$ for all $t \in(0,1)$. Hence,

$$
g^{\prime}(t)=\nabla f(x+t(y-x)) \cdot(y-x) \quad \text { for } \quad 0<t<1
$$

which was to be shown.
(c) Use the Mean Value Theorem for derivatives to show that there exists a point z is the line segment connecting x to y such that

$$
f(y)-f(x)=D_{\widehat{u}} f(z)\|y-x\|,
$$

where \widehat{u} is the unit vector in the direction of the vector $y-x$; that is, $\widehat{u}=\frac{1}{\|y-x\|}(y-x)$.
(Hint: Observe that $g(1)-g(0)=f(y)-f(x)$.)

Solution: Assume that $x \neq y$, for if $x=y$ the equality certainly holds true.
By the Mean Value Theorem, there exists $\tau \in(0,1)$ such that

$$
g(1)-g(0)=g^{\prime}(\tau)(1-0)=g^{\prime}(\tau)
$$

It then follows that

$$
f(y)-f(x)=\nabla f(x+\tau(y-x)) \cdot(y-x)
$$

Put $z=x+\tau(y-x)$; then, z is a point in the line segment connecting x to y, and

$$
\begin{aligned}
f(y)-f(x) & =\nabla f(z) \cdot(y-x) \\
& =\nabla f(z) \cdot \frac{y-x}{\|y-x\|}\|y-x\| \\
& =\nabla f(z) \cdot \widehat{u}\|y-x\| \\
& =D_{\widehat{u}} f(z)\|y-x\|,
\end{aligned}
$$

where $\widehat{u}=\frac{1}{\|y-x\|}(y-x)$.
9. Prove that if U is an open and convex subset of \mathbb{R}^{n}, and $f: U \rightarrow \mathbb{R}$ is differentiable on U with $\nabla f(v)=\mathbf{0}$ for all $v \in U$, then f must be a constant function.

Solution: Fix $x_{o} \in U$; then, since U is convex, for any $x \in U \backslash\left\{x_{o}\right\}$, the line segment connecting x_{o} to x is entirely contained in U. Furthermore, by the argument in part (c) of the previous problem, there exists z in the line segment connecting x_{o} to x such that

$$
f(x)-f\left(x_{o}\right)=D_{\widehat{u}} f(z)\left\|x-x_{o}\right\|,
$$

where $\widehat{u}=\frac{1}{\left\|x-x_{o}\right\|}\left(x-x_{o}\right)$.
Now, $D_{\widehat{u}} f(z)=\nabla f(z) \cdot \widehat{u}=0$, since $\nabla f(x)=\mathbf{0}$ for all $x \in U$. Therefore,

$$
f(x)=f\left(x_{o}\right)
$$

Since x was arbitrary, it follows that f maps every element in U to $f\left(x_{o}\right)$; that is, f is a constant function.
10. Let f be a scalar field defined on (x, y) where $x=r \cos \theta, y=r \sin \theta$. Show that

$$
\nabla f=\frac{\partial f}{\partial r} \overrightarrow{\mathbf{u}}_{r}+\frac{1}{r} \frac{\partial f}{\partial \theta} \overrightarrow{\mathbf{u}_{\theta}},
$$

where $\overrightarrow{\mathbf{u}_{r}}=(\cos \theta, \sin \theta)$ and $\overrightarrow{\mathbf{u}_{\theta}}=(-\sin \theta, \cos \theta)$.
Hint: First find $\partial f / \partial r$ and $\partial f / \partial \theta$ in terms of $\partial f / \partial x$ and $\partial f / \partial y$ and then solve for $\partial f / \partial x$ and $\partial f / \partial y$ int terms of $\partial f / \partial r$ and $\partial f / \partial \theta$.

Solution: Given $f(x, y)$ where $x=r \cos \theta$ and $y=r \sin \theta$, the Chain Rule implies that

$$
\frac{\partial f}{\partial r}=\frac{\partial f}{\partial x} \frac{\partial x}{\partial r}+\frac{\partial f}{\partial y} \frac{\partial y}{\partial r}
$$

and

$$
\frac{\partial f}{\partial \theta}=\frac{\partial f}{\partial x} \frac{\partial x}{\partial \theta}+\frac{\partial f}{\partial y} \frac{\partial y}{\partial \theta}
$$

where

$$
\begin{aligned}
\frac{\partial x}{\partial r} & =\cos \theta \\
\frac{\partial y}{\partial r} & =\sin \theta \\
\frac{\partial x}{\partial \theta} & =-r \sin \theta \\
\frac{\partial y}{\partial \theta} & =r \cos \theta
\end{aligned}
$$

It then follows that

$$
\binom{\frac{\partial f}{\partial r}}{\frac{\partial f}{\partial \theta}}=\binom{\cos \theta \frac{\partial f}{\partial x}+\sin \theta \frac{\partial f}{\partial y}}{-r \sin \theta \frac{\partial f}{\partial x}+r \cos \theta \frac{\partial f}{\partial y}}
$$

or

$$
\binom{\frac{\partial f}{\partial r}}{\frac{\partial f}{\partial \theta}}=\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
-r \sin \theta & r \cos \theta
\end{array}\right)\binom{\frac{\partial f}{\partial x}}{\frac{\partial f}{\partial y}} .
$$

Observe that the 2×2 matrix $\left(\begin{array}{cc}\cos \theta & \sin \theta \\ -r \sin \theta & r \cos \theta\end{array}\right)$ is invertible with inverse

$$
\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
-r \sin \theta & r \cos \theta
\end{array}\right)^{-1}=\frac{1}{r}\left(\begin{array}{cc}
r \cos \theta & -\sin \theta \\
r \sin \theta & \cos \theta
\end{array}\right)=\left(\begin{array}{cc}
\cos \theta & -\frac{\sin \theta}{r} \\
\sin \theta & \frac{\cos \theta}{r}
\end{array}\right)
$$

We then have that

$$
\binom{\frac{\partial f}{\partial x}}{\frac{\partial f}{\partial y}}=\left(\begin{array}{cc}
\cos \theta & -\frac{\sin \theta}{r} \\
\sin \theta & \frac{\cos \theta}{r}
\end{array}\right)\binom{\frac{\partial f}{\partial r}}{\frac{\partial f}{\partial \theta}}
$$

Which can be written as

$$
\binom{\frac{\partial f}{\partial x}}{\frac{\partial f}{\partial y}}=\frac{\partial f}{\partial r}\binom{\cos \theta}{\sin \theta}+\frac{1}{r} \frac{\partial f}{\partial \theta}\binom{-\sin \theta}{\cos \theta}
$$

Transposing the matrices on both sides yields the result.
11. Let U be an open subset of \mathbb{R}^{n} and I be an open interval. Suppose that $f: U \rightarrow$ \mathbb{R} is a differentiable scalar field and $\sigma: I \rightarrow \mathbb{R}^{n}$ be a differentiable path whose image lies in U. Suppose also that $\sigma^{\prime}(t)$ is never the zero vector. Show that if f has a local maximum or a local minimum at some point on the path, then ∇f is perpendicular to the path at that point.

Suggestion: Consider the real valued function of a single variable $g(t)=f(\sigma(t))$ for all $t \in I$.

Solution: If f has a local maximum or minimum at $\sigma\left(t_{o}\right)$, then $g^{\prime}\left(t_{o}\right)=0$, where, by the Chain rule,

$$
g^{\prime}(t)=\nabla f(\sigma(t)) \cdot \sigma^{\prime}(t) \quad \text { for all } t \in I
$$

It then follows that

$$
\nabla f\left(\sigma\left(t_{o}\right)\right) \cdot \sigma^{\prime}\left(t_{o}\right)=0
$$

and, consequently, $\nabla f\left(\sigma\left(t_{o}\right)\right.$ is perpendicular to the tangent to the path at $\sigma\left(t_{o}\right)$.
12. Let $\sigma:[a, b] \rightarrow \mathbb{R}^{n}$ be a differentiable, one-to-one path. Suppose also that $\sigma^{\prime}(t)$, is never the zero vector. Let $h:[c, d] \rightarrow[a, b]$ be a one-to-one and onto map such that $h^{\prime}(t) \neq 0$ for all $t \in[c, d]$. Define

$$
\gamma(t)=\sigma(h(t)) \quad \text { for all } t \in[c, d] .
$$

$\gamma:[c, d] \rightarrow \mathbb{R}^{n}$ is a called a reparametrization of σ
(a) Show that γ is a differentiable, one-to-one path.

Solution: Since $\gamma=\sigma \circ h$ is the composition of two differentiable maps, it follows from the Chain Rule that γ is differentiable. To show that γ is one-to-one, suppose that $\gamma\left(t_{1}\right)=\gamma\left(t_{1}\right)$ for t_{1} and t_{2} in I. It then follows that

$$
\sigma\left(h\left(t_{1}\right)\right)=\sigma\left(h\left(t_{2}\right)\right) .
$$

Thus, since σ is one-to-one,

$$
h\left(t_{1}\right)=h\left(t_{2}\right),
$$

from which we get that $t_{1}=t_{2}$ since h is one-to-one. Consequently, γ is one-to-one.
(b) Compute $\gamma^{\prime}(t)$ and show that it is never the zero vector.

Solution: By the Chain Rule,

$$
\gamma^{\prime}(t)=h^{\prime}(t) \sigma^{\prime}(h(t)) \quad \text { for all } t \in T .
$$

Thus, since neither $h^{\prime}(t)$ nor $\sigma^{\prime}(t)$ are zero, $\gamma^{\prime}(t)$ is never the zero vector.
(c) Show that σ and γ have the same image in \mathbb{R}^{n}.

Solution: We show that

$$
\begin{equation*}
\sigma([a, b])=\gamma([c, d]) \tag{5}
\end{equation*}
$$

Let $x \in \gamma([c, d])$; then, there exists $t \in[c, d]$ such that

$$
x=\gamma(t)=\sigma(h(t))
$$

Thus, there exists $h(t) \in[a, b]$ such that $x=\sigma(h(t))$; that is, $x \in \sigma([a, b])$. Hence,

$$
\begin{equation*}
\gamma([c, d]) \subseteq \sigma([a, b]) \tag{6}
\end{equation*}
$$

To show the reverse inclusion, let $x \in \sigma([a, b])$. Then, there exists $\tau \in[a, b]$ such that

$$
x=\sigma(\tau)
$$

Since $h:[c, d] \rightarrow[a, b]$ is onto, there exists $t \in[c, d]$ such that $\tau=h(t)$. Thus,

$$
x=\sigma(h(t))=\gamma(t)
$$

which shows that $x \in \gamma([c, d])$. It then, follows that

$$
\begin{equation*}
\sigma([a, b]) \subseteq \gamma([c, d]) \tag{7}
\end{equation*}
$$

Combining the inclusions in (6) and (7) we obtain the set equality in (5).

