Solutions to Review Problems for Exam 2

1. Define the scalar field $f : \mathbb{R}^n \to \mathbb{R}$ by $f(v) = \frac{1}{2} ||v||^2$ for all $v \in \mathbb{R}^n$. Show that f is differentiable on \mathbb{R}^n and compute the linear map $Df(u) : \mathbb{R}^n \to \mathbb{R}$ for all $u \in \mathbb{R}^n$. What is the gradient of f at u for all $x \in \mathbb{R}^n$?

Solution: Let u and w be any vector in \mathbb{R}^n and consider

$$f(u+w) = \frac{1}{2} ||u+w||^2$$

= $\frac{1}{2}(u+w) \cdot (u+w)$
= $\frac{1}{2}u \cdot u + u \cdot w + \frac{1}{2}w \cdot w$
= $\frac{1}{2} ||u||^2 + u \cdot w + \frac{1}{2} ||w||^2.$

Thus,

$$f(u+w) - f(u) - u \cdot w = \frac{1}{2} ||w||^2.$$

Consequently,

$$\frac{|f(u+w) - f(u) - u \cdot w|}{\|w\|} = \frac{1}{2} \|w\|,$$

from which we get that

$$\lim_{\|w\|\to 0} \frac{|f(u+w) - f(u) - u \cdot w|}{\|w\|} = 0,$$

and therefore f is differentiable at u with derivative map Df(u) given by

$$Df(u)w = u \cdot w$$
 for all $w \in \mathbb{R}^n$.

Hence, $\nabla f(u) = u$ for all $u \in \mathbb{R}^n$.

2. Let $g: [0, \infty) \to \mathbb{R}$ be a differentiable, real-valued function of a single variable, and let f(x, y) = g(r) where $r = \sqrt{x^2 + y^2}$.

(a) Compute
$$\frac{\partial r}{\partial x}$$
 in terms of x and r, and $\frac{\partial r}{\partial y}$ in terms of y and r.

Solution: Take the partial derivative of $r^2 = x^2 + y^2$ on both sides with respect to x to obtain

$$\frac{\partial(r^2)}{\partial x} = 2x.$$

Applying the chain rule on the left-hand side we get

$$2r\frac{\partial r}{\partial x} = 2x,$$

which leads to

$$\frac{\partial r}{\partial x} = \frac{x}{r}.$$

Similarly, $\frac{\partial r}{\partial y} = \frac{y}{r}$.

(b) Compute ∇f in terms of g'(r), r and the vector $\mathbf{r} = x\hat{i} + y\hat{j}$.

Solution: Take the partial derivative of f(x, y) = g(r) on both sides with respect to x and apply the Chain Rule to obtain

$$\frac{\partial f}{\partial x} = g'(r)\frac{\partial r}{\partial x} = g'(r)\frac{x}{r}.$$

Similarly, $\frac{\partial f}{\partial y} = g'(r)\frac{y}{r}$. It then follows that

$$\nabla f = \frac{\partial f}{\partial x}\hat{i} + \frac{\partial f}{\partial y}\hat{j}$$
$$= g'(r)\frac{x}{r}\hat{i} + g'(r)\frac{y}{r}\hat{j}$$
$$= \frac{g'(r)}{r}(x\hat{i} + y\hat{j})$$
$$= \frac{g'(r)}{r}\mathbf{r}.$$

3. Let $f: U \to \mathbb{R}$ denote a scalar field defined on an open subset U of \mathbb{R}^n , and let \hat{u} be a unit vector in \mathbb{R}^n . If the limit

$$\lim_{t \to 0} \frac{f(v+t\hat{u}) - f(v)}{t}$$

exists, we call it the directional derivative of f at v in the direction of the unit vector \hat{u} . We denote it by $D_{\hat{u}}f(v)$.

(a) Show that if f is differentiable at $v \in U$, then, for any unit vector \hat{u} in \mathbb{R}^n , the directional derivative of f in the direction of \hat{u} at v exists, and

$$D_{\widehat{u}}f(v) = \nabla f(v) \cdot \widehat{u},$$

where $\nabla f(v)$ is the gradient of f at v.

Proof: Suppose that f is differentiable at $v \in U$. Then,

$$f(v+w) = f(v) + Df(v)w + E(w),$$

where

$$Df(v)w = \nabla f(v) \cdot w,$$

and

$$\lim_{\|w\| \to 0} \frac{|E(w)|}{\|w\|} = 0.$$

Thus, for any $t \in \mathbb{R}$,

$$f(v + t\widehat{u}) = f(v) + t\nabla f(v) \cdot \widehat{u} + E(t\widehat{u}),$$

where

$$\lim_{|t|\to 0} \frac{|E(t\widehat{u})|}{|t|} = 0,$$

since $||t\hat{u}|| = |t|||\hat{u}|| = |t|$. We then have that, for $t \neq 0$,

$$\frac{f(v+t\widehat{u}) - f(v)}{t} - \nabla f(v) \cdot \widehat{u} = \frac{E(t\widehat{u})}{t},$$

and consequently

$$\left|\frac{f(v+t\widehat{u})-f(v)}{t}-\nabla f(v)\cdot\widehat{u}\right| = \frac{|E(t\widehat{u})|}{|t|},$$

from which we get that

$$\lim_{t \to 0} \left| \frac{f(v + t\widehat{u}) - f(v)}{t} - \nabla f(v) \cdot \widehat{u} \right| = 0.$$

(b) Suppose that $f: U \to \mathbb{R}$ is differentiable at $v \in U$. Prove that if $D_{\hat{u}}f(v) = 0$ for every unit vector \hat{u} in \mathbb{R}^n , then $\nabla f(v)$ must be the zero vector.

Proof: Suppose, by way of contradiction, that $\nabla f(v) \neq 0$, and put

$$\widehat{u} = \frac{1}{\|\nabla f(v)\|} \nabla f(v).$$

Then, \hat{u} is a unit vector, and therefore, by the assumption,

$$D_{\widehat{u}}f(v) = 0,$$

or

$$\nabla f(v) \cdot \hat{u} = 0$$

But this implies that

$$\nabla f(v) \cdot \frac{1}{\|\nabla f(v)\|} \nabla f(v) = 0,$$

where

$$\nabla f(v) \cdot \frac{1}{\|\nabla f(v)\|} \nabla f(v) = \frac{1}{\|\nabla f(v)\|} \nabla f(v) \cdot \nabla f(v)$$
$$= \frac{1}{\|\nabla f(v)\|} \|\nabla f(v)\|^2$$
$$= \|\nabla f(v)\|.$$

It then follows that $\|\nabla f(v)\| = 0$, which contradicts the assumption that $\nabla f(v) \neq \mathbf{0}$. Therefore, $\nabla f(v)$ must be the zero vector.

(c) Suppose that $f: U \to \mathbb{R}$ is differentiable at $v \in U$. Use the Cauchy– Schwarz inequality to show that the largest value of $D_{\hat{u}}f(v)$ is $\|\nabla f(v)\|$ and it occurs when \hat{u} is in the direction of $\nabla f(v)$.

Proof. If f is differentiable at x, then $D_{\hat{u}}f(x) = \nabla f(x) \cdot \hat{u}$, as was shown in part (a). Thus, by the Cauchy–Schwarz inequality,

$$|D_{\widehat{u}}f(x)| \leq \|\nabla f(x)\| \|\widehat{u}\| = \|\nabla f(x)\|,$$

since \hat{u} is a unit vector. Hence,

$$-\|\nabla f(x)\| \leqslant D_{\widehat{u}}f(x) \leqslant \|\nabla f(x)\|$$

for any unit vector \hat{u} , and so the largest value that $D_{\hat{u}}f(x)$ can have is $\|\nabla f(x)\|$. If $\nabla f(x) \neq \mathbf{0}$, then $\hat{u} = \frac{1}{\|\nabla f(x)\|} \nabla f(x)$ is a unit vector, and

$$\|\nabla f(x)\|$$

$$D_{\widehat{u}}f(x) = \nabla f(x) \cdot \widehat{u}$$

$$= \nabla f(x) \cdot \frac{1}{\|\nabla f(x)\|} \nabla f(x)$$

$$= \frac{1}{\|\nabla f(x)\|} \nabla f(x) \cdot \nabla f(x)$$

$$= \frac{1}{\|\nabla f(x)\|} \|\nabla f(x)\|^{2}$$

$$= \|\nabla f(x)\|.$$

Thus, $D_{\hat{u}}f(x)$ attains its largest value when \hat{u} is in the direction of $\nabla f(x)$.

4. The scalar field $f: U \to \mathbb{R}$ is said to have a *local minimum* at $x \in U$ if there exists r > 0 such that $B_r(x) \subseteq U$ and

$$f(x) \leq f(y)$$
 for every $y \in B_r(x)$.

Prove that if f is differentiable at $x \in U$ and f has a local minimum at x, then $\nabla f(x) = \mathbf{0}$, the zero vector in \mathbb{R}^n .

Proof. Let \hat{u} be a unit vector and $t \in \mathbb{R}$ be such that |t| < r; then,

$$f(x + t\widehat{u}) \ge f(x),$$

from which we get that

$$f(x+t\widehat{u}) - f(x) \ge 0.$$

Dividing by t > 0 we then have that

$$\frac{f(x+t\widehat{u})-f(x)}{t} \ge 0.$$

Thus, letting $t \to 0^+$, we get that

$$D_{\widehat{u}}f(x) \ge 0,\tag{1}$$

since f is differentiable at x. Similarly, dividing by t < 0, we have

$$\frac{f(x+t\widehat{u})-f(x)}{t}\leqslant 0,$$

from which we obtain, letting $t \to 0^-$, that

$$D_{\widehat{u}}f(x) \leqslant 0. \tag{2}$$

Combining (1) and (2) we then have that

$$D_{\widehat{u}}f(x) = 0,$$

where \hat{u} is an arbitrary unit vector. It then follows from the previous problem that $\nabla f(x) = \mathbf{0}$.

5. Let I denote an open interval in \mathbb{R} . Suppose that $\sigma: I \to \mathbb{R}^n$ and $\gamma: I \to \mathbb{R}^n$ are paths in \mathbb{R}^n . Define a real valued function $f: I \to \mathbb{R}$ of a single variable by

$$f(t) = \sigma(t) \cdot \gamma(t)$$
 for all $t \in I$;

that is, f(t) is the dot product of the two paths at t.

Show that if σ and γ are both differentiable on *I*, then so is *f*, and

$$f'(t) = \sigma'(t) \cdot \gamma(t) + \sigma(t) \cdot \gamma'(t)$$
 for all $t \in I$.

Solution: Let $t \in I$ and assume that both σ and γ are differentiable at t. Then,

 $\sigma(t+h) = \sigma(t) + h\sigma'(t) + E_1(h)$, for |h| sufficiently small,

where

$$\lim_{h \to 0} \frac{\|E_1(h)\|}{|h|} = 0.$$
 (3)

Similarly,

$$\gamma(t+h) = \gamma(t) + h\gamma'(t) + E_2(h)$$
, for $|h|$ sufficiently small,

where

$$\lim_{h \to 0} \frac{\|E_2(h)\|}{|h|} = 0.$$
(4)

It then follows that, for |h| sufficiently small,

$$\begin{aligned} f(t+h) &= \sigma(t+h) \cdot \gamma(t+h) \\ &= (\sigma(t) + h\sigma'(t) + E_1(h)) \cdot (\gamma(t) + h\gamma'(t) + E_2(h)) \\ &= \sigma(t) \cdot \gamma(t) + h\sigma(t) \cdot \gamma'(t) + \sigma(t) \cdot E_2(h)) + h\sigma'(t) \cdot \gamma(t) \\ &+ h^2 \sigma'(t) \cdot \gamma'(t) + h\sigma'(t) \cdot E_2(h) + E_1(h) \cdot \gamma(t) \\ &+ hE_1(h) \cdot \gamma'(t) + E_1(h) \cdot E_2(h) \end{aligned}$$
$$\begin{aligned} &= f(t) + h[\sigma(t) \cdot \gamma'(t) + \sigma'(t) \cdot \gamma(t)] + h^2 \sigma'(t) \cdot \gamma'(t) \\ &+ \sigma(t) \cdot E_2(h)) + h\sigma'(t) \cdot E_2(h) + E_1(h) \cdot \gamma(t) \\ &+ hE_1(h) \cdot \gamma'(t) + E_1(h) \cdot E_2(h) \end{aligned}$$

Rearranging terms and dividing by $h\neq 0$ and |h| small enough, we then have that

$$\frac{f(t+h) - f(t)}{h} = \sigma(t) \cdot \gamma'(t) + \sigma'(t) \cdot \gamma(t) + h\sigma'(t) \cdot \gamma'(t) + \sigma(t) \cdot \frac{E_2(h)}{h} + \sigma'(t) \cdot E_2(h) + \frac{E_1(h)}{h} \cdot \gamma(t) + E_1(h) \cdot \gamma'(t) + E_1(h) \cdot \frac{E_2(h)}{h}$$

Observe that, as $h \to 0$, all the terms on the right hand side of the previous expression which involve E_1 or E_2 go to 0, by virtue of the Cauchy–Schwarz inequality and (3) and (4). Therefore, we obtain that

$$\lim_{h \to 0} \frac{f(t+h) - f(t)}{h} = \sigma(t) \cdot \gamma'(t) + \sigma'(t) \cdot \gamma(t).$$

Hence, f is differentiable at t, and its derivative at t is

$$f'(t) = \sigma(t) \cdot \gamma'(t) + \sigma'(t) \cdot \gamma(t).$$

Since t is an arbitrary element of I, the result follows.

6. Let $\sigma: I \to \mathbb{R}^n$ denote a differentiable path in \mathbb{R}^n . Show that if $\|\sigma(t)\|$ is constant for all $t \in I$, then $\sigma'(t)$ is orthogonal to $\sigma(t)$ for all $t \in I$.

Solution: Let $\|\sigma(t)\| = c$, where c denotes a constant. Then,

 $\|\sigma(t)\|^2 = c^2,$

or

$$\sigma(t) \cdot \sigma(t) = c^2.$$

Differentiating with respect to t on both sides, and using the result of the previous problem, we obtain that

 $\sigma(t) \cdot \sigma'(t) + \sigma'(t) \cdot \sigma(t) = 0,$

or, by the symmetry of the dot-product,

$$2\sigma'(t)\cdot\sigma(t)=0,$$

or

$$\sigma'(t) \cdot \sigma(t) = 0.$$

Hence, $\sigma'(t)$ is orthogonal to $\sigma(t)$ for all $t \in I$.

7. A particle is following a path in three-dimensional space given by

 $\sigma(t) = (e^t, e^{-t}, 1 - t) \quad \text{for } t \in \mathbb{R}.$

At time $t_o = 1$, the particle flies off on a tangent.

(a) Where will the particle be at time $t_1 = 2$?

Solution: Find the tangent line to the path at $\sigma(1)$:

$$\overrightarrow{r}(t) = \sigma(1) + (t-1)\sigma'(1),$$

where

$$\sigma'(t) = (e^t, -e^{-t}, -1) \quad \text{for} \ t \in \mathbb{R}$$

Then,

$$\overrightarrow{r}(t) = (e, 1/e, 0) + (t-1)(e, -1/e, -1).$$

The parametric equations of the tangent line then are

$$\begin{cases} x = e + e(t - 1) \\ y = 1/e - (t - 1)/e \\ z = 1 - t \end{cases}$$

When t = 2, the particle will be at the point in \mathbb{R}^3 with coordinates

(2e, 0, -1).

(b) Will the particle ever hit the xy-plane? Is so, find the location on the xy plane where the particle hits.

Answer: The particle leaves the path at the point with coordinates (e, 1/e, 0) on the xy-plane. After that, it doesn't come back to it.

8. Let U denote an open and convex subset of \mathbb{R}^n . Suppose that $f: U \to \mathbb{R}$ is differentiable at every $x \in U$. Fix x and y in U, and define $g: [0, 1] \to \mathbb{R}$ by

$$g(t) = f(x + t(y - x)) \quad \text{for } 0 \le t \le 1.$$

(a) Explain why the function g is well defined.

Solution: Since U is convex, x + t(y - x) is in U for $0 \le t \le 1$. Thus, f(x + t(y - x)) is defined for $t \in [0, 1]$.

(b) Show that g is differentiable on (0, 1) and that

$$g'(t) = \nabla f(x + t(y - x)) \cdot (y - x)$$
 for $0 < t < 1$.

Solution: Apply the Chain Rule to the maps $f: U \to \mathbb{R}$ and $\sigma: (0,1) \to \mathbb{R}^n$ given by

$$\sigma(t) = x + t(y - x) \quad \text{for } t \in (0, 1).$$

Since U is convex, it follows that $\sigma(t) \in U$ for all $t \in (0,1)$. Consequently, $\sigma((0,1)) \subseteq U$ and therefore $f \circ \sigma \colon (0,1) \to \mathbb{R}$ is defined. Furthermore, by the Chain Rule, $f \circ \sigma$ is differentiable with

$$D(f \circ \sigma)(t) = Df(\sigma(t))D\sigma(t) = \nabla f(\sigma(t)) \cdot \sigma'(t) \quad \text{for all } t \in (0, 1).$$

Note that $g = f \circ \sigma$ and $\sigma'(t) = y - x$ for all $t \in (0, 1)$. Hence,

$$g'(t) = \nabla f(x + t(y - x)) \cdot (y - x)$$
 for $0 < t < 1$,

which was to be shown.

(c) Use the Mean Value Theorem for derivatives to show that there exists a point z is the line segment connecting x to y such that

$$f(y) - f(x) = D_{\widehat{u}}f(z) ||y - x||,$$

where \hat{u} is the unit vector in the direction of the vector y - x; that is, $\hat{u} = \frac{1}{\|y - x\|}(y - x).$ (*Hint:* Observe that g(1) - g(0) = f(y) - f(x).)

Solution: Assume that $x \neq y$, for if x = y the equality certainly holds true.

By the Mean Value Theorem, there exists $\tau \in (0, 1)$ such that

$$g(1) - g(0) = g'(\tau)(1 - 0) = g'(\tau)$$

It then follows that

$$f(y) - f(x) = \nabla f(x + \tau(y - x)) \cdot (y - x).$$

Put $z = x + \tau(y - x)$; then, z is a point in the line segment connecting x to y, and

$$\begin{split} f(y) - f(x) &= \nabla f(z) \cdot (y - x) \\ &= \nabla f(z) \cdot \frac{y - x}{\|y - x\|} \|y - x\| \\ &= \nabla f(z) \cdot \hat{u} \|y - x\| \\ &= D_{\hat{u}} f(z) \|y - x\|, \end{split}$$
 where $\hat{u} = \frac{1}{\|y - x\|} (y - x).$

9. Prove that if U is an open and convex subset of \mathbb{R}^n , and $f: U \to \mathbb{R}$ is differentiable on U with $\nabla f(v) = \mathbf{0}$ for all $v \in U$, then f must be a constant function.

Solution: Fix $x_o \in U$; then, since U is convex, for any $x \in U \setminus \{x_o\}$, the line segment connecting x_o to x is entirely contained in U. Furthermore, by the argument in part (c) of the previous problem, there exists z in the line segment connecting x_o to x such that

$$f(x) - f(x_o) = D_{\widehat{u}}f(z) \|x - x_o\|,$$

where $\hat{u} = \frac{1}{\|x - x_o\|} (x - x_o)$. Now, $D_{\hat{u}}f(z) = \nabla f(z) \cdot \hat{u} = 0$, since $\nabla f(x) = \mathbf{0}$ for all $x \in U$. Therefore,

$$f(x) = f(x_o).$$

Since x was arbitrary, it follows that f maps every element in U to $f(x_o)$; that is, f is a constant function.

10. Let f be a scalar field defined on (x, y) where $x = r \cos \theta$, $y = r \sin \theta$. Show that

$$\nabla f = \frac{\partial f}{\partial r} \overrightarrow{\mathbf{u}_r} + \frac{1}{r} \frac{\partial f}{\partial \theta} \overrightarrow{\mathbf{u}_{\theta}},$$

where $\overrightarrow{\mathbf{u}_r} = (\cos \theta, \sin \theta)$ and $\overrightarrow{\mathbf{u}_{\theta}} = (-\sin \theta, \cos \theta)$.

Hint: First find $\partial f/\partial r$ and $\partial f/\partial \theta$ in terms of $\partial f/\partial x$ and $\partial f/\partial y$ and then solve for $\partial f/\partial x$ and $\partial f/\partial y$ int terms of $\partial f/\partial r$ and $\partial f/\partial \theta$.

Solution: Given f(x, y) where $x = r \cos \theta$ and $y = r \sin \theta$, the Chain Rule implies that

$$\frac{\partial f}{\partial r} = \frac{\partial f}{\partial x}\frac{\partial x}{\partial r} + \frac{\partial f}{\partial y}\frac{\partial y}{\partial r}$$

and

$$\frac{\partial f}{\partial \theta} = \frac{\partial f}{\partial x} \frac{\partial x}{\partial \theta} + \frac{\partial f}{\partial y} \frac{\partial y}{\partial \theta},$$

where

$$\frac{\partial x}{\partial r} = \cos \theta,$$
$$\frac{\partial y}{\partial r} = \sin \theta,$$
$$\frac{\partial x}{\partial \theta} = -r \sin \theta,$$
$$\frac{\partial y}{\partial \theta} = r \cos \theta.$$

It then follows that

$$\begin{pmatrix} \frac{\partial f}{\partial r} \\ \frac{\partial f}{\partial \theta} \end{pmatrix} = \begin{pmatrix} \cos\theta \frac{\partial f}{\partial x} + \sin\theta \frac{\partial f}{\partial y} \\ -r\sin\theta \frac{\partial f}{\partial x} + r\cos\theta \frac{\partial f}{\partial y} \end{pmatrix}$$

or

$$\begin{pmatrix} \frac{\partial f}{\partial r} \\ \frac{\partial f}{\partial \theta} \end{pmatrix} = \begin{pmatrix} \cos \theta & \sin \theta \\ -r \sin \theta & r \cos \theta \end{pmatrix} \begin{pmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \end{pmatrix}.$$

Observe that the 2 × 2 matrix $\begin{pmatrix} \cos\theta & \sin\theta\\ & \\ -r\sin\theta & r\cos\theta \end{pmatrix}$ is invertible with

inverse

$$\begin{pmatrix} \cos\theta & \sin\theta \\ -r\sin\theta & r\cos\theta \end{pmatrix}^{-1} = \frac{1}{r} \begin{pmatrix} r\cos\theta & -\sin\theta \\ r\sin\theta & \cos\theta \end{pmatrix} = \begin{pmatrix} \cos\theta & -\frac{\sin\theta}{r} \\ & \\ \sin\theta & \frac{\cos\theta}{r} \end{pmatrix}.$$

We then have that

$$\begin{pmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \end{pmatrix} = \begin{pmatrix} \cos\theta & -\frac{\sin\theta}{r} \\ \sin\theta & \frac{\cos\theta}{r} \end{pmatrix} \begin{pmatrix} \frac{\partial f}{\partial r} \\ \frac{\partial f}{\partial \theta} \end{pmatrix}$$

Which can be written as

$$\begin{pmatrix} \frac{\partial f}{\partial x} \\ \frac{\partial f}{\partial y} \end{pmatrix} = \frac{\partial f}{\partial r} \begin{pmatrix} \cos \theta \\ \sin \theta \end{pmatrix} + \frac{1}{r} \frac{\partial f}{\partial \theta} \begin{pmatrix} -\sin \theta \\ \cos \theta \end{pmatrix}.$$

Transposing the matrices on both sides yields the result.

11. Let U be an open subset of \mathbb{R}^n and I be an open interval. Suppose that $f: U \to I$ \mathbb{R} is a differentiable scalar field and $\sigma: I \to \mathbb{R}^n$ be a differentiable path whose image lies in U. Suppose also that $\sigma'(t)$ is never the zero vector. Show that if f has a local maximum or a local minimum at some point on the path, then ∇f is perpendicular to the path at that point.

Suggestion: Consider the real valued function of a single variable $g(t) = f(\sigma(t))$ for all $t \in I$.

Solution: If f has a local maximum or minimum at $\sigma(t_o)$, then $g'(t_o) = 0$, where, by the Chain rule,

$$g'(t) = \nabla f(\sigma(t)) \cdot \sigma'(t)$$
 for all $t \in I$.

It then follows that

$$\nabla f(\sigma(t_o)) \cdot \sigma'(t_o) = 0,$$

and, consequently, $\nabla f(\sigma(t_o))$ is perpendicular to the tangent to the path at $\sigma(t_o)$.

12. Let $\sigma: [a, b] \to \mathbb{R}^n$ be a differentiable, one-to-one path. Suppose also that $\sigma'(t)$, is never the zero vector. Let $h: [c, d] \to [a, b]$ be a one-to-one and onto map such that $h'(t) \neq 0$ for all $t \in [c, d]$. Define

$$\gamma(t) = \sigma(h(t))$$
 for all $t \in [c, d]$.

 $\gamma \colon [c,d] \to \mathbb{R}^n$ is a called a *reparametrization* of σ

(a) Show that γ is a differentiable, one-to-one path.

Solution: Since $\gamma = \sigma \circ h$ is the composition of two differentiable maps, it follows from the Chain Rule that γ is differentiable. To show that γ is one-to-one, suppose that $\gamma(t_1) = \gamma(t_1)$ for t_1 and t_2 in I. It then follows that

$$\sigma(h(t_1)) = \sigma(h(t_2)).$$

Thus, since σ is one-to-one,

$$h(t_1) = h(t_2),$$

from which we get that $t_1 = t_2$ since h is one-to-one. Consequently, γ is one-to-one.

(b) Compute $\gamma'(t)$ and show that it is never the zero vector.

Solution: By the Chain Rule,

$$\gamma'(t) = h'(t)\sigma'(h(t))$$
 for all $t \in T$.

Thus, since neither h'(t) nor $\sigma'(t)$ are zero, $\gamma'(t)$ is never the zero vector.

(c) Show that σ and γ have the same image in \mathbb{R}^n .

Solution: We show that

$$\sigma([a,b]) = \gamma([c,d]).$$
(5)

Let $x \in \gamma([c, d])$; then, there exists $t \in [c, d]$ such that

$$x = \gamma(t) = \sigma(h(t)).$$

Thus, there exists $h(t) \in [a, b]$ such that $x = \sigma(h(t))$; that is, $x \in \sigma([a, b])$. Hence,

$$\gamma([c,d]) \subseteq \sigma([a,b]). \tag{6}$$

To show the reverse inclusion, let $x \in \sigma([a, b])$. Then, there exists $\tau \in [a, b]$ such that

$$x = \sigma(\tau)$$

Since $h: [c,d] \to [a,b]$ is onto, there exists $t \in [c,d]$ such that $\tau = h(t)$. Thus,

$$x = \sigma(h(t)) = \gamma(t),$$

which shows that $x \in \gamma([c, d])$. It then, follows that

$$\sigma([a,b]) \subseteq \gamma([c,d]). \tag{7}$$

Combining the inclusions in (6) and (7) we obtain the set equality in (5). \Box