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Solutions to Review Problems for Exam 2

1
1. Define the scalar field f: R* — R by f(v) = §HvH2 for all v € R™. Show that

f is differentiable on R™ and compute the linear map Df(u): R" — R for all
u € R™. What is the gradient of f at u for all x € R"?

Solution: Let u and w be any vector in R™ and consider

flutw) = flutw|?

1 2 1 2
= Sl Sl

Thus,
1
flutw) = flu) —u-w=|w]*
Consequently,
[[]] 277
from which we get that
et w) = fw) ]

lw]—0 [|w]]

and therefore f is differentiable at u with derivative map D f(u) given
by
Df(u)w=wu-w forall we R".

Hence, V f(u) = u for all u € R". O

2. Let g: [0,00) — R be a differentiable, real-valued function of a single variable,

and let f(x,y) = g(r) where r = \/1:2—1—3/ :
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or or
(a) Compute — in terms of z and r, and — in terms of y and r.

ox oy

Solution: Take the partial derivative of r? = 22 + 3? on both
sides with respect to x to obtain

a(r?)

RASMPANE, 1%
ox o

Applying the chain rule on the left-hand side we get
or

U =2
r e x,
which leads to
or_z
or r
Similarly, 2" = Y. [
dy r

(b) Compute V f in terms of ¢/(r), r and the vector r = TP+ .

Solution: Take the partial derivative of f(x,y) = g(r) on both
sides with respect to x and apply the Chain Rule to obtain

g =g
Similarly, Z_J; - g’(r)%.
It then follows that
Vf = %;+ g—gé
= J)=i+g
= 2074y
_ 9,
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3. Let f: U — R denote a scalar field defined on an open subset U of R", and let
u be a unit vector in R™. If the limit

o L0+ 10) = S )

t—0 t

exists, we call it the directional derivative of f at v in the direction of the unit
vector u. We denote it by Dz f(v).

(a) Show that if f is differentiable at v € U, then, for any unit vector @ in R",
the directional derivative of f in the direction of u at v exists, and

Dﬂf(v) = Vf(v) : aa
where V f(v) is the gradient of f at v.
Proof: Suppose that f is differentiable at v € U. Then,
flo4+w)= f(v)+ Df(v)w+ E(w),

where
Df(v)w=Vf(v) - w,
and
im M =0.
fuwll~o [|w]|

Thus, for any t € R,
flo+tu) = f(v) +tVf(v) -u+ E(tu),

where Bt
lim —| () =0,
[t|—0 ’t‘
since [|tul] = [¢[[[ul] = [£].
We then have that, for t # 0,
tu) — E(tu
fot @)= ) oo o BR)
t t
and consequently
tu) — E(tu
flot0) = f(0) oo o B
t Iz
from which we get that
tu) —
i [LOFD =S Gy al — o,
t—0 t
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(b)

Suppose that f: U — R is differentiable at v € U. Prove that if D f(v) =
0 for every unit vector ¥ in R”, then V f(v) must be the zero vector.

Proof: Suppose, by way of contradiction, that V f(v) # 0, and put

1
u=-——-—Vf(v).
ZIOINEAR
Then, u is a unit vector, and therefore, by the assumption,
Dﬂf(v) = 07
or
Vf)-u=0.
But this implies that
1
Vi) —=——=Vf(v)=0,
SN O ARAR
where
VW) o VW) = o Vi) Vi)
IV f ()l IV f ()l
T
= — v
IV f ()l
= [Vl
It then follows that ||V f(v)|| = 0, which contradicts the assumption that
V f(v) # 0. Therefore, V f(v) must be the zero vector. O

Suppose that f: U — R is differentiable at v € U. Use the Cauchy—
Schwarz inequality to show that the largest value of Dsf(v) is ||V f(v)]|
and it occurs when u is in the direction of V f(v).

Proof. 1f f is differentiable at x, then Dy f(z) = V f(x) - u, as was shown
in part (a). Thus, by the Cauchy—Schwarz inequality,

| Daf (@)l < IV (@)[[all = V)],

since u is a unit vector. Hence,

—IVf@)l < Daf(z) <[[Vf (@)
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for any unit vector u, and so the largest value that Djf(z) can have is

IV ()]
If Vf(xz)# 0, then u = me(:c) is a unit vector, and
Df(z) = Vf(zx)-u
1
-V RN v/
SN O A
1
BRZIGINEAA
= IV
Vi@
= V@)
Thus, Dy f(x) attains its largest value when @ is in the direction of V f(x).

O

4. The scalar field f: U — R is said to have a local minimum at x € U if there
exists > 0 such that B,(z) C U and

flz) < fly) forevery y € Bi ().

Prove that if f is differentiable at x € U and f has a local minimum at x, then
V f(xz) = 0, the zero vector in R™.

Proof. Let u be a unit vector and ¢ € R be such that |[¢t| < r; then,

flz+tu) > f(x),
from which we get that
flz +ta) - f(z) > 0.
Dividing by ¢ > 0 we then have that

[z + tu) — f(x)

= 0.
t
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Thus, letting ¢t — 0T, we get that
Daf(x) 20, (1)

since f is differentiable at x. Similarly, dividing by ¢ < 0, we have

[z + tu) — f(x)
t

<0,

from which we obtain, letting ¢ — 07, that

Dgf(z) <0. (2)
Combining (1) and (2) we then have that

Daf(x) =0,

where u is an arbitrary unit vector. It then follows from the previous problem
that Vf(z) = 0. O

5. Let I denote an open interval in R. Suppose that ¢: I — R” and v: [ — R"
are paths in R™. Define a real valued function f: I — R of a single variable by

f(t) =0o(t)-~y(t) forall teI;

that is, f(¢) is the dot product of the two paths at t.
Show that if o and ~ are both differentiable on 7, then so is f, and

f't)=0a'(t) -~v(t)+o(t)-+'(t) forall tel.

Solution: Let t € I and assume that both ¢ and ~ are differentiable
at t. Then,

o(t+h) =o(t) + ho'(t) + Ei(h), for |h| sufficiently small,

where (1
B

=0. 3
h—0 |h| ( )

Similarly,

v(t + h) = ~(t) + by (t) + E2(h), for |h| sufficiently small,
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where (R
()]
h—0 ||

It then follows that, for |h| sufficiently small,

—0. (4)

ft+h) = o(t+h)-v(t+h)
= (0(t) + ho'(t) + Ex(h)) - (7(t) + 1y (1) + Ea(h))

= o(t) () +ha(t) -Y(t) + o) Ea2(h)) + ho'(t) - ()
+h?a'(t) - o/ (t) + ha'(t) - Ea(h) + Ev(h) - »(t)
+hEy(h) - ' (t) + Ei(h) - Ea(h)

= JOF oW (0) () (0] + ) (0
o (t) - Ey(h) + ho' () - Ea(h) + Ex(h) -4(2)
FhEy(h) -/ (t) + Ex(h) - Ex(h)

Rearranging terms and dividing by h # 0 and |h| small enough, we
then have that

f{t+h) = f(t)
h

= o(t) ) +0'(t) - y(t) + +ha'(t) - (1)

+o(t) - E2T(h) + o' (t) - Ea(h) + Elf(bh) (1)
E) /() + Ba(h) - 2

Observe that, as h — 0, all the terms on the right hand side of the
previous expression which involve E; or Fs go to 0, by virtue of the
Cauchy—Schwarz inequality and (3) and (4). Therefore, we obtain

that
o FlE B~ ()

h=0 h =o(t) -+ (t) +0'(t) - 7(D)

Hence, f is differentiable at ¢, and its derivative at ¢ is

f(t) =a(t) -~ (t) +0'(t) - 7(1).

Since t is an arbitrary element of I, the result follows. O

7

6. Let 0: I — R" denote a differentiable path in R". Show that if ||o(t)| is

constant for all ¢ € I, then ¢’(t) is orthogonal to o(t) for all ¢t € I.
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Solution: Let ||o(t)|| = ¢, where ¢ denotes a constant. Then,
lo(@)I* = ¢,
or
o(t) - o(t) =
Differentiating with respect to ¢ on both sides, and using the result
of the previous problem, we obtain that

o(t)-o'(t)+d'(t) - ot) =0,
or, by the symmetry of the dot—product,
20'(t) - o(t) =0,

or
a'(t)-o(t) =0.
Hence, o’(t) is orthogonal to o(t) for all t € I. O

7. A particle is following a path in three-dimensional space given by
o(t) = (e, e ", 1—t) for t€R.
At time t, = 1, the particle flies off on a tangent.

(a) Where will the particle be at time t; = 27
Solution: Find the tangent line to the path at o(1):
(1) =o(1) + (t = 1o’ (1),
where
o'(t) = (e, —e",—1) for teR.
Then,
7@) = <€7 1/67 0) + (t - 1)(67 _1/67 _1>

The parametric equations of the tangent line then are
r=e+e(t—1)

y=1/e—(t—1)/e
z=1-1

When t = 2, the particle will be at the point in R? with coordinates
(2¢,0,—1).

8
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(b) Will the particle ever hit the zy—plane? Is so, find the location on the zy
plane where the particle hits.

Answer: The particle leaves the path at the point with coordi-
nates (e, 1/e,0) on the zy—plane. After that, it doesn’t come back
to it. O

8. Let U denote an open and convex subset of R™. Suppose that f: U — R is
differentiable at every x € U. Fix x and y in U, and define g: [0,1] — R by

g(t) = flz+tly—=z)) for 0<t<1.

(a) Explain why the function g is well defined.

Solution: Since U is convex, x +t(y —x) isin U for 0 < ¢ < 1.
Thus, f(z + t(y — x)) is defined for ¢t € [0, 1]. O

(b) Show that g is differentiable on (0,1) and that
Jgt)=Vf(xz+tly—=z)) - (y—=x) for 0<t<1.
Solution: Apply the Chain Rule to the maps f: U — R and

o:(0,1) — R" given by
o(t)=x+tly—x) for te€(0,1).

Since U is convex, it follows that o(t) € U for all t € (0,1).
Consequently, ¢((0,1)) € U and therefore foo: (0,1) — R is
defined. Furthermore, by the Chain Rule, f o ¢ is differentiable
with
D(foo)(t) = Df(o(t))Do(t) =V f(a(t)) o'(t) forallte (0,1).
Note that g = foo and 0'(t) =y — x for all £ € (0,1). Hence,

Jt)=Vflx+tly—=x)) (y—z) for 0 <t <1,
which was to be shown. 0J

(c¢) Use the Mean Value Theorem for derivatives to show that there exists a
point z is the line segment connecting x to y such that

fy) = f(x) = Daf(2)lly — =],

where @ is the unit vector in the direction of the vector y — x; that is,
- 1
u=——(y— ).
ly — ]
(Hint: Observe that g(1) — ¢(0) = f(y) — f(z).)
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Solution: Assume that x # y, for if z = y the equality certainly
holds true.
By the Mean Value Theorem, there exists 7 € (0, 1) such that

9(1) = g(0) = ¢'(7)(1 = 0) = ¢'(7).
It then follows that
fly) = f@)=Vflz+71(y—2))- (y —2).

Put z = z + 7(y — x); then, z is a point in the line segment
connecting x to y, and

fly) = flx) = V() (y—2)

Yy—x

= Vf(2)- ly — |

N P
= Vf(z)-ully— =
= Daf(2)lly — ||,

1
where © = Yy —x). O
PG

9. Prove that if U is an open and convex subset of R, and f: U — R is dif-
ferentiable on U with V f(v) = 0 for all v € U, then f must be a constant
function.

Solution: Fix z, € U; then, since U is convex, for any = € U\{z,},
the line segment connecting x, to x is entirely contained in U. Fur-
thermore, by the argument in part (c) of the previous problem, there
exists z in the line segment connecting x, to x such that

f(@) = f(xo) = Daf(2)||z — zoll,

1
where U = ——(z — x,).
[l = ||
Now, Dzf(z) = Vf(z) -u = 0, since Vf(z) = 0 for all x € U.
Therefore,
f@) = flxo).

Since x was arbitrary, it follows that f maps every element in U to
f(z,); that is, f is a constant function. O
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10. Let f be a scalar field defined on (z,y) where x = rcosf, y = rsinf. Show

that 8f 1of
= @
vf 7“ + 69 0
where @, = (cos 6, sin6) and uj) = (— sinf, cos ).

Hint: First find f /Or and 9f /00 in terms of df /0x and Jf /0y and then solve
for f /Ox and Of /0y int terms of f/0r and Of/00.

Solution: Given f(x,y) where z = rcosf and y = rsin 6, the Chain

Rule implies that
0 af _ 0 of ox L of af 8y

or  dxor dy or

and
0f _0for  ofoy
00  0x 00  Oyol’
where
L
o = cos b,
% = sinf,
Oz )
% = —rsind,
oy
%0 = rcosf.
It then follows that
of of of
o COSG@x + sm&ay
o |
20 —rsm@a —I—TCOSHa—y
or
of of

or cosf)  sinf or
of —rsinf rcosd af
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cos sin 6
Observe that the 2 x 2 matrix is invertible with
—rsinf@ rcosf

inverse
. sin 0
cos 6 sin @ 1 rcos —sinf cost) — ,
—rsinf@ rcosf " \rsing cos® sin 6 cos 6
r
We then have that
of 0 sin 0 of
Ox o8 r or
a_f g COS 0 af
8y S1n , %
Which can be written as
of
or of cos 1of [~ sin 6
% or sin 6 r 00 cos
dy
Transposing the matrices on both sides yields the result. 0

11. Let U be an open subset of R™ and I be an open interval. Suppose that f: U —
R is a differentiable scalar field and o: I — R" be a differentiable path whose
image lies in U. Suppose also that ¢’(t) is never the zero vector. Show that if f
has a local maximum or a local minimum at some point on the path, then V f
is perpendicular to the path at that point.

Suggestion: Consider the real valued function of a single variable g(t) = f(o(t))
for all t € 1.

Solution: If f has a local maximum or minimum at o(t,), then
g'(t,) = 0, where, by the Chain rule,

g(t)=Vf(o(t)) -o'(t) forall tel.
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It then follows that

and, consequently, V f(o(t,) is perpendicular to the tangent to the
path at o(t,). O

12. Let o: [a,b] — R" be a differentiable, one-to—one path. Suppose also that o’(t),
is never the zero vector. Let h: [¢,d] — [a,b] be a one-to—one and onto map
such that A/(t) # 0 for all ¢ € [¢, d]. Define

~v(t) = o(h(t)) forall t € [c,d].
v: [e,d] — R™ is a called a reparametrization of o

(a) Show that v is a differentiable, one-to—one path.

Solution: Since v = ooh is the composition of two differentiable
maps, it follows from the Chain Rule that ~ is differentiable.

To show that v is one—to—one, suppose that (t1) = ~(t1) for ¢
and ¢y in I. It then follows that

o(h(t1)) = o(h(tz)).
Thus, since ¢ is one-to—one,
h(t1) = h(t2),

from which we get that t; = t, since h is one-to—one. Conse-
quently, v is one—to—one. 0

(b) Compute +'(t) and show that it is never the zero vector.

Solution: By the Chain Rule,
Y (t) =n(t)o'(h(t)) forall teT.

Thus, since neither A'(¢) nor o’(t) are zero, 7'(t) is never the zero
vector. U

(¢) Show that o and ~ have the same image in R™.
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Solution: We show that

o([a, b]) = ([, d]). (5)

Let o € ¥([e,d]); then, there exists t € [c,d] such that

z=7(t) = a(h(t)).

Thus, there exists h(t) € [a,b] such that z = o(h(t)); that is,
z € o([a,b]). Hence,

V(e d]) € o([a, b]). (6)

To show the reverse inclusion, let € o([a, b]). Then, there exists
T € [a, b] such that
x=o(T).

Since h: [¢,d] — [a,b] is onto, there exists t € [c,d] such that
7 = h(t). Thus,

z=o(h(t)) = (1),
which shows that « € v([c, d]). It then, follows that

a(la, b)) € ~(le, d)). (7)

Combining the inclusions in (6) and (7) we obtain the set equality
in (5). O



