
Math 107. Rumbos Fall 2009 1

Solutions to Review Problems for Exam 2

1. Define the scalar field f : ℝn → ℝ by f(v) =
1

2
∥v∥2 for all v ∈ ℝn. Show that

f is differentiable on ℝn and compute the linear map Df(u) : ℝn → ℝ for all
u ∈ ℝn. What is the gradient of f at u for all x ∈ ℝn?

Solution: Let u and w be any vector in ℝn and consider

f(u+ w) =
1

2
∥u+ w∥2

=
1

2
(u+ w) ⋅ (u+ w)

=
1

2
u ⋅ u+ u ⋅ w +

1

2
w ⋅ w

=
1

2
∥u∥2 + u ⋅ w +

1

2
∥w∥2.

Thus,

f(u+ w)− f(u)− u ⋅ w =
1

2
∥w∥2.

Consequently,

∣f(u+ w)− f(u)− u ⋅ w∣
∥w∥

=
1

2
∥w∥,

from which we get that

lim
∥w∥→0

∣f(u+ w)− f(u)− u ⋅ w∣
∥w∥

= 0,

and therefore f is differentiable at u with derivative map Df(u) given
by

Df(u)w = u ⋅ w for all w ∈ ℝn.

Hence, ∇f(u) = u for all u ∈ ℝn. □

2. Let g : [0,∞)→ ℝ be a differentiable, real–valued function of a single variable,
and let f(x, y) = g(r) where r =

√
x2 + y2.
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(a) Compute
∂r

∂x
in terms of x and r, and

∂r

∂y
in terms of y and r.

Solution: Take the partial derivative of r2 = x2 + y2 on both
sides with respect to x to obtain

∂(r2)

∂x
= 2x.

Applying the chain rule on the left–hand side we get

2r
∂r

∂x
= 2x,

which leads to
∂r

∂x
=
x

r
.

Similarly,
∂r

∂y
=
y

r
. □

(b) Compute ∇f in terms of g′(r), r and the vector r = x̂i+ yĵ.

Solution: Take the partial derivative of f(x, y) = g(r) on both
sides with respect to x and apply the Chain Rule to obtain

∂f

∂x
= g′(r)

∂r

∂x
= g′(r)

x

r
.

Similarly,
∂f

∂y
= g′(r)

y

r
.

It then follows that

∇f =
∂f

∂x
î+

∂f

∂y
ĵ

= g′(r)
x

r
î+ g′(r)

y

r
ĵ

=
g′(r)

r
(x̂i+ yĵ)

=
g′(r)

r
r.

□
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3. Let f : U → ℝ denote a scalar field defined on an open subset U of ℝn, and let
û be a unit vector in ℝn. If the limit

lim
t→0

f(v + tû)− f(v)

t

exists, we call it the directional derivative of f at v in the direction of the unit
vector û. We denote it by Dûf(v).

(a) Show that if f is differentiable at v ∈ U , then, for any unit vector û in ℝn,
the directional derivative of f in the direction of û at v exists, and

Dûf(v) = ∇f(v) ⋅ û,

where ∇f(v) is the gradient of f at v.

Proof: Suppose that f is differentiable at v ∈ U . Then,

f(v + w) = f(v) +Df(v)w + E(w),

where
Df(v)w = ∇f(v) ⋅ w,

and

lim
∥w∥→0

∣E(w)∣
∥w∥

= 0.

Thus, for any t ∈ ℝ,

f(v + tû) = f(v) + t∇f(v) ⋅ û+ E(tû),

where

lim
∣t∣→0

∣E(tû)∣
∣t∣

= 0,

since ∥tû∥ = ∣t∣∥û∥ = ∣t∣.
We then have that, for t ∕= 0,

f(v + tû)− f(v)

t
−∇f(v) ⋅ û =

E(tû)

t
,

and consequently∣∣∣∣f(v + tû)− f(v)

t
−∇f(v) ⋅ û

∣∣∣∣ =
∣E(tû)∣
∣t∣

,

from which we get that

lim
t→0

∣∣∣∣f(v + tû)− f(v)

t
−∇f(v) ⋅ û

∣∣∣∣ = 0.
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(b) Suppose that f : U → ℝ is differentiable at v ∈ U . Prove that if Dûf(v) =
0 for every unit vector û in ℝn, then ∇f(v) must be the zero vector.

Proof: Suppose, by way of contradiction, that ∇f(v) ∕= 0, and put

û =
1

∥∇f(v)∥
∇f(v).

Then, û is a unit vector, and therefore, by the assumption,

Dûf(v) = 0,

or
∇f(v) ⋅ û = 0.

But this implies that

∇f(v) ⋅ 1

∥∇f(v)∥
∇f(v) = 0,

where

∇f(v) ⋅ 1

∥∇f(v)∥
∇f(v) =

1

∥∇f(v)∥
∇f(v) ⋅ ∇f(v)

=
1

∥∇f(v)∥
∥∇f(v)∥2

= ∥∇f(v)∥.

It then follows that ∥∇f(v)∥ = 0, which contradicts the assumption that
∇f(v) ∕= 0. Therefore, ∇f(v) must be the zero vector.

(c) Suppose that f : U → ℝ is differentiable at v ∈ U . Use the Cauchy–
Schwarz inequality to show that the largest value of Dûf(v) is ∥∇f(v)∥
and it occurs when û is in the direction of ∇f(v).

Proof. If f is differentiable at x, then Dûf(x) = ∇f(x) ⋅ û, as was shown
in part (a). Thus, by the Cauchy–Schwarz inequality,

∣Dûf(x)∣ ⩽ ∥∇f(x)∥∥û∥ = ∥∇f(x)∥,

since û is a unit vector. Hence,

−∥∇f(x)∥ ⩽ Dûf(x) ⩽ ∥∇f(x)∥
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for any unit vector û, and so the largest value that Dûf(x) can have is
∥∇f(x)∥.

If ∇f(x) ∕= 0, then û =
1

∥∇f(x)∥
∇f(x) is a unit vector, and

Dûf(x) = ∇f(x) ⋅ û

= ∇f(x) ⋅ 1

∥∇f(x)∥
∇f(x)

=
1

∥∇f(x)∥
∇f(x) ⋅ ∇f(x)

=
1

∥∇f(x)∥
∥∇f(x)∥2

= ∥∇f(x)∥.

Thus, Dûf(x) attains its largest value when û is in the direction of ∇f(x).

4. The scalar field f : U → ℝ is said to have a local minimum at x ∈ U if there
exists r > 0 such that Br(x) ⊆ U and

f(x) ⩽ f(y) for every y ∈ Br(x).

Prove that if f is differentiable at x ∈ U and f has a local minimum at x, then
∇f(x) = 0, the zero vector in ℝn.

Proof. Let û be a unit vector and t ∈ ℝ be such that ∣t∣ < r; then,

f(x+ tû) ⩾ f(x),

from which we get that
f(x+ tû)− f(x) ⩾ 0.

Dividing by t > 0 we then have that

f(x+ tû)− f(x)

t
⩾ 0.
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Thus, letting t→ 0+, we get that

Dûf(x) ⩾ 0, (1)

since f is differentiable at x. Similarly, dividing by t < 0, we have

f(x+ tû)− f(x)

t
⩽ 0,

from which we obtain, letting t→ 0−, that

Dûf(x) ⩽ 0. (2)

Combining (1) and (2) we then have that

Dûf(x) = 0,

where û is an arbitrary unit vector. It then follows from the previous problem
that ∇f(x) = 0.

5. Let I denote an open interval in ℝ. Suppose that � : I → ℝn and  : I → ℝn

are paths in ℝn. Define a real valued function f : I → ℝ of a single variable by

f(t) = �(t) ⋅ (t) for all t ∈ I;

that is, f(t) is the dot product of the two paths at t.

Show that if � and  are both differentiable on I, then so is f , and

f ′(t) = �′(t) ⋅ (t) + �(t) ⋅ ′(t) for all t ∈ I.

Solution: Let t ∈ I and assume that both � and  are differentiable
at t. Then,

�(t+ ℎ) = �(t) + ℎ�′(t) + E1(ℎ), for ∣ℎ∣ sufficiently small,

where

lim
ℎ→0

∥E1(ℎ)∥
∣ℎ∣

= 0. (3)

Similarly,

(t+ ℎ) = (t) + ℎ′(t) + E2(ℎ), for ∣ℎ∣ sufficiently small,
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where

lim
ℎ→0

∥E2(ℎ)∥
∣ℎ∣

= 0. (4)

It then follows that, for ∣ℎ∣ sufficiently small,

f(t+ ℎ) = �(t+ ℎ) ⋅ (t+ ℎ)

= (�(t) + ℎ�′(t) + E1(ℎ)) ⋅ ((t) + ℎ′(t) + E2(ℎ))

= �(t) ⋅ (t) + ℎ�(t) ⋅ ′(t) + �(t) ⋅ E2(ℎ)) + ℎ�′(t) ⋅ (t)
+ℎ2�′(t) ⋅ ′(t) + ℎ�′(t) ⋅ E2(ℎ) + E1(ℎ) ⋅ (t)
+ℎE1(ℎ) ⋅ ′(t) + E1(ℎ) ⋅ E2(ℎ)

= f(t) + ℎ[�(t) ⋅ ′(t) + �′(t) ⋅ (t)] + ℎ2�′(t) ⋅ ′(t)
+�(t) ⋅ E2(ℎ)) + ℎ�′(t) ⋅ E2(ℎ) + E1(ℎ) ⋅ (t)
+ℎE1(ℎ) ⋅ ′(t) + E1(ℎ) ⋅ E2(ℎ)

Rearranging terms and dividing by ℎ ∕= 0 and ∣ℎ∣ small enough, we
then have that

f(t+ ℎ)− f(t)

ℎ
= �(t) ⋅ ′(t) + �′(t) ⋅ (t) + +ℎ�′(t) ⋅ ′(t)

+�(t) ⋅ E2(ℎ)

ℎ
+ �′(t) ⋅ E2(ℎ) +

E1(ℎ)

ℎ
⋅ (t)

+E1(ℎ) ⋅ ′(t) + E1(ℎ) ⋅ E2(ℎ)

ℎ

Observe that, as ℎ → 0, all the terms on the right hand side of the
previous expression which involve E1 or E2 go to 0, by virtue of the
Cauchy–Schwarz inequality and (3) and (4). Therefore, we obtain
that

lim
ℎ→0

f(t+ ℎ)− f(t)

ℎ
= �(t) ⋅ ′(t) + �′(t) ⋅ (t).

Hence, f is differentiable at t, and its derivative at t is

f ′(t) = �(t) ⋅ ′(t) + �′(t) ⋅ (t).

Since t is an arbitrary element of I, the result follows. □

6. Let � : I → ℝn denote a differentiable path in ℝn. Show that if ∥�(t)∥ is
constant for all t ∈ I, then �′(t) is orthogonal to �(t) for all t ∈ I.
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Solution: Let ∥�(t)∥ = c, where c denotes a constant. Then,

∥�(t)∥2 = c2,

or
�(t) ⋅ �(t) = c2.

Differentiating with respect to t on both sides, and using the result
of the previous problem, we obtain that

�(t) ⋅ �′(t) + �′(t) ⋅ �(t) = 0,

or, by the symmetry of the dot–product,

2�′(t) ⋅ �(t) = 0,

or
�′(t) ⋅ �(t) = 0.

Hence, �′(t) is orthogonal to �(t) for all t ∈ I. □

7. A particle is following a path in three–dimensional space given by

�(t) = (et, e−t, 1− t) for t ∈ ℝ.

At time to = 1, the particle flies off on a tangent.

(a) Where will the particle be at time t1 = 2?

Solution: Find the tangent line to the path at �(1):

−→r (t) = �(1) + (t− 1)�′(1),

where
�′(t) = (et,−e−t,−1) for t ∈ ℝ.

Then,
−→r (t) = (e, 1/e, 0) + (t− 1)(e,−1/e,−1).

The parametric equations of the tangent line then are⎧⎨⎩
x = e+ e(t− 1)

y = 1/e− (t− 1)/e

z = 1− t

When t = 2, the particle will be at the point in ℝ3 with coordinates

(2e, 0,−1).

□



Math 107. Rumbos Fall 2009 9

(b) Will the particle ever hit the xy–plane? Is so, find the location on the xy
plane where the particle hits.

Answer: The particle leaves the path at the point with coordi-
nates (e, 1/e, 0) on the xy–plane. After that, it doesn’t come back
to it. □

8. Let U denote an open and convex subset of ℝn. Suppose that f : U → ℝ is
differentiable at every x ∈ U . Fix x and y in U , and define g : [0, 1]→ ℝ by

g(t) = f(x+ t(y − x)) for 0 ⩽ t ⩽ 1.

(a) Explain why the function g is well defined.

Solution: Since U is convex, x + t(y − x) is in U for 0 ⩽ t ⩽ 1.
Thus, f(x+ t(y − x)) is defined for t ∈ [0, 1]. □

(b) Show that g is differentiable on (0, 1) and that

g′(t) = ∇f(x+ t(y − x)) ⋅ (y − x) for 0 < t < 1.

Solution: Apply the Chain Rule to the maps f : U → ℝ and
� : (0, 1)→ ℝn given by

�(t) = x+ t(y − x) for t ∈ (0, 1).

Since U is convex, it follows that �(t) ∈ U for all t ∈ (0, 1).
Consequently, �((0, 1)) ⊆ U and therefore f ∘ � : (0, 1) → ℝ is
defined. Furthermore, by the Chain Rule, f ∘ � is differentiable
with

D(f ∘�)(t) = Df(�(t))D�(t) = ∇f(�(t)) ⋅�′(t) for all t ∈ (0, 1).

Note that g = f ∘ � and �′(t) = y − x for all t ∈ (0, 1). Hence,

g′(t) = ∇f(x+ t(y − x)) ⋅ (y − x) for 0 < t < 1,

which was to be shown. □

(c) Use the Mean Value Theorem for derivatives to show that there exists a
point z is the line segment connecting x to y such that

f(y)− f(x) = Dûf(z)∥y − x∥,

where û is the unit vector in the direction of the vector y − x; that is,

û =
1

∥y − x∥
(y − x).

(Hint: Observe that g(1)− g(0) = f(y)− f(x).)
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Solution: Assume that x ∕= y, for if x = y the equality certainly
holds true.
By the Mean Value Theorem, there exists � ∈ (0, 1) such that

g(1)− g(0) = g′(�)(1− 0) = g′(�).

It then follows that

f(y)− f(x) = ∇f(x+ �(y − x)) ⋅ (y − x).

Put z = x + �(y − x); then, z is a point in the line segment
connecting x to y, and

f(y)− f(x) = ∇f(z) ⋅ (y − x)

= ∇f(z) ⋅ y − x
∥y − x∥

∥y − x∥

= ∇f(z) ⋅ û ∥y − x∥

= Dûf(z)∥y − x∥,

where û =
1

∥y − x∥
(y − x). □

9. Prove that if U is an open and convex subset of ℝn, and f : U → ℝ is dif-
ferentiable on U with ∇f(v) = 0 for all v ∈ U , then f must be a constant
function.

Solution: Fix xo ∈ U ; then, since U is convex, for any x ∈ U∖{xo},
the line segment connecting xo to x is entirely contained in U . Fur-
thermore, by the argument in part (c) of the previous problem, there
exists z in the line segment connecting xo to x such that

f(x)− f(xo) = Dûf(z)∥x− xo∥,

where û =
1

∥x− xo∥
(x− xo).

Now, Dûf(z) = ∇f(z) ⋅ û = 0, since ∇f(x) = 0 for all x ∈ U .
Therefore,

f(x) = f(xo).

Since x was arbitrary, it follows that f maps every element in U to
f(xo); that is, f is a constant function. □
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10. Let f be a scalar field defined on (x, y) where x = r cos �, y = r sin �. Show
that

∇f =
∂f

∂r
−→ur +

1

r

∂f

∂�
−→u�,

where −→ur = (cos �, sin �) and −→u� = (− sin �, cos �).

Hint: First find ∂f/∂r and ∂f/∂� in terms of ∂f/∂x and ∂f/∂y and then solve
for ∂f/∂x and ∂f/∂y int terms of ∂f/∂r and ∂f/∂�.

Solution: Given f(x, y) where x = r cos � and y = r sin �, the Chain
Rule implies that

∂f

∂r
=
∂f

∂x

∂x

∂r
+
∂f

∂y

∂y

∂r

and
∂f

∂�
=
∂f

∂x

∂x

∂�
+
∂f

∂y

∂y

∂�
,

where
∂x

∂r
= cos �,

∂y

∂r
= sin �,

∂x

∂�
= −r sin �,

∂y

∂�
= r cos �.

It then follows that⎛⎜⎜⎜⎝
∂f

∂r

∂f

∂�

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
cos �

∂f

∂x
+ sin �

∂f

∂y

−r sin �
∂f

∂x
+ r cos �

∂f

∂y

⎞⎟⎟⎟⎠
or ⎛⎜⎜⎜⎝

∂f

∂r

∂f

∂�

⎞⎟⎟⎟⎠ =

⎛⎝ cos � sin �

−r sin � r cos �

⎞⎠
⎛⎜⎜⎜⎝
∂f

∂x

∂f

∂y

⎞⎟⎟⎟⎠ .
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Observe that the 2× 2 matrix

⎛⎝ cos � sin �

−r sin � r cos �

⎞⎠ is invertible with

inverse

⎛⎝ cos � sin �

−r sin � r cos �

⎞⎠−1 =
1

r

⎛⎝r cos � − sin �

r sin � cos �

⎞⎠ =

⎛⎜⎜⎜⎝
cos � −sin �

r

sin �
cos �

r

⎞⎟⎟⎟⎠ .

We then have that⎛⎜⎜⎜⎝
∂f

∂x

∂f

∂y

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
cos � −sin �

r

sin �
cos �

r

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝
∂f

∂r

∂f

∂�

⎞⎟⎟⎟⎠ .

Which can be written as⎛⎜⎜⎜⎝
∂f

∂x

∂f

∂y

⎞⎟⎟⎟⎠ =
∂f

∂r

⎛⎝cos �

sin �

⎞⎠+
1

r

∂f

∂�

⎛⎝− sin �

cos �

⎞⎠ .

Transposing the matrices on both sides yields the result. □

11. Let U be an open subset of ℝn and I be an open interval. Suppose that f : U →
ℝ is a differentiable scalar field and � : I → ℝn be a differentiable path whose
image lies in U . Suppose also that �′(t) is never the zero vector. Show that if f
has a local maximum or a local minimum at some point on the path, then ∇f
is perpendicular to the path at that point.

Suggestion: Consider the real valued function of a single variable g(t) = f(�(t))
for all t ∈ I.

Solution: If f has a local maximum or minimum at �(to), then
g′(to) = 0, where, by the Chain rule,

g′(t) = ∇f(�(t)) ⋅ �′(t) for all t ∈ I.
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It then follows that

∇f(�(to)) ⋅ �′(to) = 0,

and, consequently, ∇f(�(to) is perpendicular to the tangent to the
path at �(to). □

12. Let � : [a, b]→ ℝn be a differentiable, one–to–one path. Suppose also that �′(t),
is never the zero vector. Let ℎ : [c, d] → [a, b] be a one–to–one and onto map
such that ℎ′(t) ∕= 0 for all t ∈ [c, d]. Define

(t) = �(ℎ(t)) for all t ∈ [c, d].

 : [c, d]→ ℝn is a called a reparametrization of �

(a) Show that  is a differentiable, one–to–one path.

Solution: Since  = � ∘ℎ is the composition of two differentiable
maps, it follows from the Chain Rule that  is differentiable.
To show that  is one–to–one, suppose that (t1) = (t1) for t1
and t2 in I. It then follows that

�(ℎ(t1)) = �(ℎ(t2)).

Thus, since � is one–to–one,

ℎ(t1) = ℎ(t2),

from which we get that t1 = t2 since ℎ is one–to–one. Conse-
quently,  is one–to–one. □

(b) Compute ′(t) and show that it is never the zero vector.

Solution: By the Chain Rule,

′(t) = ℎ′(t)�′(ℎ(t)) for all t ∈ T.

Thus, since neither ℎ′(t) nor �′(t) are zero, ′(t) is never the zero
vector. □

(c) Show that � and  have the same image in ℝn.
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Solution: We show that

�([a, b]) = ([c, d]). (5)

Let x ∈ ([c, d]); then, there exists t ∈ [c, d] such that

x = (t) = �(ℎ(t)).

Thus, there exists ℎ(t) ∈ [a, b] such that x = �(ℎ(t)); that is,
x ∈ �([a, b]). Hence,

([c, d]) ⊆ �([a, b]). (6)

To show the reverse inclusion, let x ∈ �([a, b]). Then, there exists
� ∈ [a, b] such that

x = �(�).

Since ℎ : [c, d] → [a, b] is onto, there exists t ∈ [c, d] such that
� = ℎ(t). Thus,

x = �(ℎ(t)) = (t),

which shows that x ∈ ([c, d]). It then, follows that

�([a, b]) ⊆ ([c, d]). (7)

Combining the inclusions in (6) and (7) we obtain the set equality
in (5). □


