Exam 3

December 2, 2009

Name: _____

This is a closed book exam. Show all significant work and justify all your answers. Use your own paper and/or the paper provided by the instructor. You have 75 minutes to work on the following 5 problems. Relax.

1. Let C denote a curve in \mathbb{R}^3 parametrized by the path

$$\sigma(t) = (1, 3t^2, t^3), \text{ for } 0 \le t \le 1.$$

Compute the arclength, $\ell(C)$, of the curve C.

2. Let $C = \{(x, y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1, y \ge 0\}$, the upper, unit semicircle in \mathbb{R}^2 . Compute the following path integrals:

(a)
$$\int_C x \, \mathrm{d}s$$
 (b) $\int_C y \, \mathrm{d}s$

3. Let $F : \mathbb{R}^3 \to \mathbb{R}^3$ denote the vector field defined by

$$F(x, y, z) = y^2 z \,\,\widehat{\mathbf{i}} + 2xyz \,\,\widehat{\mathbf{j}} + xy^2 \,\,\widehat{\mathbf{k}}$$

for all $(x, y, z) \in \mathbb{R}^3$.

- (a) Find a scalar field, $f : \mathbb{R}^3 \to \mathbb{R}$, with the property that $F = \nabla f$.
- (b) Evaluate the line integral $\int_C F \cdot T \, ds$, where C is the curve shown in Figure 1, on page 2 of this exam, going from the point (-2, 4, 3) to the point (3, 1, -1). Justify your calculations and your answer.
- 4. Let $F(x, y) = 2x \, \hat{\mathbf{i}} + y \, \hat{\mathbf{j}}$ and R be the quadrilateral region in the xy-plane with vertices (0,0), (1,-1), (2,1) and (1,2). Use the divergence form of Green's Theorem to evaluate, $\oint_{\partial R} F \cdot n \, ds$, the flux of the field F across the boundary of R.

Figure 1: Curve ${\cal C}$ in part (b) of Problem 3

5. Sketch the region of integration, R, based on the iterated integral

$$\int_0^4 \int_{x/2}^2 e^{-y^2} \, \mathrm{d}y \, \mathrm{d}x,$$

and evaluate the double integral

$$\iint_R e^{-y^2} \, \mathrm{d}x \, \mathrm{d}y.$$