Exam 3

Name: \qquad
This is a closed book exam. Show all significant work and justify all your answers. Use your own paper and/or the paper provided by the instructor. You have 75 minutes to work on the following 5 problems. Relax.

1. Let C denote a curve in \mathbb{R}^{3} parametrized by the path

$$
\sigma(t)=\left(1,3 t^{2}, t^{3}\right), \quad \text { for } 0 \leqslant t \leqslant 1
$$

Compute the arclength, $\ell(C)$, of the curve C.
2. Let $C=\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+y^{2}=1, y \geqslant 0\right\}$, the upper, unit semicircle in \mathbb{R}^{2}. Compute the following path integrals:
(a) $\int_{C} x \mathrm{~d} s$
(b) $\int_{C} y \mathrm{~d} s$
3. Let $F: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ denote the vector field defined by

$$
F(x, y, z)=y^{2} z \widehat{\mathbf{i}}+2 x y z \widehat{\mathbf{j}}+x y^{2} \widehat{\mathbf{k}}
$$

for all $(x, y, z) \in \mathbb{R}^{3}$.
(a) Find a scalar field, $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$, with the property that $F=\nabla f$.
(b) Evaluate the line integral $\int_{C} F \cdot T \mathrm{~d} s$, where C is the curve shown in

Figure 1, on page 2 of this exam, going from the point $(-2,4,3)$ to the point $(3,1,-1)$. Justify your calculations and your answer.
4. Let $F(x, y)=2 x \widehat{\mathbf{i}}+y \widehat{\mathbf{j}}$ and R be the quadrilateral region in the $x y$-plane with vertices $(0,0),(1,-1),(2,1)$ and $(1,2)$. Use the divergence form of Green's Theorem to evaluate, $\oint_{\partial R} F \cdot n \mathrm{~d} s$, the flux of the field F across the boundary of R.

Figure 1: Curve C in part (b) of Problem 3
5. Sketch the region of integration, R, based on the iterated integral

$$
\int_{0}^{4} \int_{x / 2}^{2} e^{-y^{2}} \mathrm{~d} y \mathrm{~d} x
$$

and evaluate the double integral

$$
\iint_{R} e^{-y^{2}} \mathrm{~d} x \mathrm{~d} y
$$

