Review Problems for Exam 3

1. Consider a wheel of radius a which is rolling on the x-axis in the $x y$-plane. Suppose that the center of the wheel moves in the positive x-direction and a constant speed v_{o}. Let P denote a fixed point on the rim of the wheel.
(a) Give a path $\sigma(t)=(x(t), y(t))$ giving the position of the P at any time t, if P is initially at the point $(0,2 a)$.
(b) Compute the velocity of P at any time t. When is the velocity of P horizontal? What is the speed of P at those times?
2. Let $C=\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+y^{2}=1, y \geqslant 0\right\}$; i.e., C is the upper unit semi-circle. C can be parametrized by

$$
\sigma(\tau)=\left(\tau, \sqrt{1-\tau^{2}}\right) \quad \text { for } \quad-1 \leqslant \tau \leqslant 1
$$

(a) Compute $s(t)$, the arclength along C from $(-1,0)$ to the point $\sigma(t)$, for $0 \leqslant t \leqslant 1$.
(b) Compute $s^{\prime}(t)$ for $-1<t<t$ and sketch the graph of s as function of t.
(c) Show that $\cos (\pi-s(t))=t$ for all $-1 \leqslant t \leqslant 1$, and deduce that

$$
\sin (s(t))=\sqrt{1-t^{2}} \quad \text { for all }-1 \leqslant t \leqslant 1
$$

3. Let C denote the unit circle traversed in the counterclockwise direction. Evaluate the line integral $\int_{C} \frac{x}{2} \mathrm{~d} y-\frac{y}{2} \mathrm{~d} x$.
4. Let $F(x, y)=2 x \widehat{i}-y \widehat{j}$ and R be the square in the $x y$-plane with vertices $(0,0),(2,-1),(3,1)$ and $(1,2)$. Evaluate $\oint_{\partial R} F \cdot n \mathrm{~d} s$.
5. Evaluate the line integral $\int_{\partial R}\left(x^{4}+y\right) \mathrm{d} x+\left(2 x-y^{4}\right) \quad \mathrm{d} y$, where R is the rectangular region

$$
R=\left\{(x, y) \in \mathbb{R}^{2} \mid-1 \leqslant x \leqslant 3,-2 \leqslant y \leqslant 1\right\}
$$

and ∂R is traversed in the counterclockwise sense.
6. Integrate the function given by $f(x, y)=x y^{2}$ over the region, R, defined by:

$$
R=\left\{(x, y) \in \mathbb{R}^{2} \mid x \geqslant 0,0 \leqslant y \leqslant 4-x^{2}\right\}
$$

7. Let R denote the region in the plane defined by inside of the ellipse

$$
\begin{equation*}
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1, \tag{1}
\end{equation*}
$$

for $a>0$ and $b>0$.
(a) Evaluate the line integral $\oint_{\partial R} x \mathrm{~d} y-y \mathrm{~d} x$, where ∂R is the ellipse in (1) traversed in the positive sense.
(b) Use your result from part (a) and the divergence form of Green's theorem to come up with a formula for computing the area of the region enclosed by the ellipse in (1).
8. Evaluate the double integral $\int_{R} e^{-x^{2}} \mathrm{~d} x \mathrm{~d} y$, where R is the region in the $x y-$ plane sketched in Figure 1.

Figure 1: Sketch of Region R in Problem 8

