Solutions to Review Problems for Exam 3

1. Consider a wheel of radius a which is rolling on the x-axis in the $x y$-plane. Suppose that the center of the wheel moves in the positive x-direction and a constant speed v_{o}. Let P denote a fixed point on the rim of the wheel.
(a) Give a path $\sigma(t)=(x(t), y(t))$ giving the position of the P at any time t, if P is initially at the point $(0,2 a)$.

Solution: Let $\theta(t)$ denote the angle that the ray from the center

Figure 1: Circle
of the circle to the point $(x(t), y(t))$ makes with a vertical line through the center. Then, $v_{o} t=a \theta(t)$; so that $\theta(t)=\frac{v_{o}}{a} t$ and

$$
x(t)=v_{o} t+a \sin (\theta(t))
$$

and

$$
y(t)=a+a \cos (\theta(t))
$$

(b) Compute the velocity of P at any time t. When is the velocity of P horizontal? What is the speed of P at those times?

Solution: The velocity vector is

$$
\sigma^{\prime}(t)=\left(x^{\prime}(t), y^{\prime}(t)\right)=\left(v_{o}+a \theta^{\prime}(t) \cos (\theta(t)),-a \theta^{\prime}(t) \sin (\theta(t))\right)
$$

where

$$
\theta^{\prime}(t)=\frac{v_{o}}{a} .
$$

We then have that

$$
\sigma^{\prime}(t)=\left(v_{o}+v_{o} \cos (\theta(t)),-v_{o} \sin (\theta(t))\right)
$$

The velocity of P is horizontal when

$$
\sin (\theta(t))=0
$$

or

$$
\theta(t)=n \pi,
$$

where n is an integer; and when

$$
\cos (\theta(t)) \neq-1
$$

We then get that the velocity of P is horizontal when

$$
\theta(t)=2 k \pi
$$

where k is an integer.
The speed at the points where the velocity if horizontal is then equal to $2 v_{o}$.
2. Let $C=\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+y^{2}=1, y \geqslant 0\right\}$; i.e., C is the upper unit semi-circle. C can be parametrized by

$$
\sigma(\tau)=\left(\tau, \sqrt{1-\tau^{2}}\right) \quad \text { for } \quad-1 \leqslant \tau \leqslant 1
$$

(a) Compute $s(t)$, the arclength along C from $(-1,0)$ to the point $\sigma(t)$, for $0 \leqslant t \leqslant 1$.

Solution: Compute $\sigma^{\prime}(\tau)=\left(1,-\frac{\tau}{\sqrt{1-\tau^{2}}}\right)$. for all $\tau \in(-1,1)$.
Then,

$$
\left\|\sigma^{\prime}(\tau)\right\|=\sqrt{1+\frac{\tau^{2}}{1-\tau^{2}}}=\frac{1}{\sqrt{1-\tau^{2}}}
$$

It then follows that

$$
s(t)=\int_{-1}^{t} \frac{1}{\sqrt{1-\tau^{2}}} \mathrm{~d} \tau \quad \text { for }-1 \leqslant t \leqslant 1
$$

(b) Compute $s^{\prime}(t)$ for $-1<t<t$ and sketch the graph of s as function of t.

Solution: By the Fundamental Theorem of Calculus,

$$
s^{\prime}(t)=\frac{1}{\sqrt{1-t^{2}}} \quad \text { for }-1<t<1
$$

Note then that $s^{\prime}(t)>0$ for all $t \in(-1,1)$ and therefore s is strictly increasing on $(-1,1)$.
Next, compute the derivative of $s^{\prime}(t)$ to get the second derivative of $s(t)$:

$$
s^{\prime \prime}(t)=\frac{t}{\left(1-t^{2}\right)^{3 / 2}} \quad \text { for }-1<t<1
$$

It then follows that $s^{\prime \prime}(t)<0$ for $-1<t<0$ and $s^{\prime \prime}(t)>0$ for $0<t<1$. Thus, the graph of $s=s(t)$ is concave down on $(-1,0)$ and concave up on $(0,1)$.
Finally, observe that $s(-1)=0, s(0)=\pi / 2$ (the arc-length along a quarter of the unit circle), and $s(1)=\pi$ (the arc-length along a semi-circle of unit radius). We can then sketch the graph of $s=s(t)$ as shown in Figure 2.

Figure 2: Sketch of $s=s(t)$
(c) Show that $\cos (\pi-s(t))=t$ for all $-1 \leqslant t \leqslant 1$, and deduce that

$$
\sin (s(t))=\sqrt{1-t^{2}} \quad \text { for all } \quad-1 \leqslant t \leqslant 1
$$

Solution: Figure 3 shows the upper unit semicircle and a point $\sigma(t)$ on it. Putting $\theta(t)=\pi-s(t)$, then $\theta(t)$ is the angle, in radians, that the ray from the origin to $\sigma(t)$ makes with the positive x-axis. It then follows that

$$
\cos (\theta(t))=t
$$

and

$$
\sin (\theta(t))=\sqrt{1-t^{2}}
$$

Since

$$
\sin (\theta(t))=\sin (\pi-s(t))=\sin (s(t)
$$

the result follows.

Figure 3: Sketch of Semi-circle
3. Let C denote the unit circle traversed in the counterclockwise direction. Evaluate the line integral $\int_{C} \frac{x}{2} \mathrm{~d} y-\frac{y}{2} \mathrm{~d} x$.

Solution: Let $F(x, y)=\frac{x}{2} \widehat{i}+\frac{y}{2} \widehat{j}$. Then,

$$
\int_{C} \frac{x}{2} \mathrm{~d} y-\frac{y}{2} \mathrm{~d} x=\int_{C} F \cdot \widehat{n} \mathrm{~d} s
$$

Thus, by Green's Theorem in divergence form,

$$
\int_{C} \frac{x}{2} \mathrm{~d} y-\frac{y}{2} \mathrm{~d} x=\iint_{R} \operatorname{div} F \mathrm{~d} x \mathrm{~d} y
$$

where R is the unit disc bounded by C, and

$$
\operatorname{div} F(x, y)=\frac{\partial}{\partial x}\left(\frac{x}{2}\right)+\frac{\partial}{\partial y}\left(\frac{y}{2}\right)=\frac{1}{2}+\frac{1}{2}=1 .
$$

Consequently,

$$
\int_{C} \frac{x}{2} \mathrm{~d} y-\frac{y}{2} \mathrm{~d} x=\iint_{R} \mathrm{~d} x \mathrm{~d} y=\operatorname{area}(R)=\pi
$$

4. Let $F(x, y)=2 x \widehat{i}-y \widehat{j}$ and R be the square in the $x y$-plane with vertices $(0,0),(2,-1),(3,1)$ and $(1,2)$. Evaluate $\oint_{\partial R} F \cdot n \mathrm{~d} s$.

Solution: Apply Green's Theorem in divergence form,

$$
\oint_{\partial R} F \cdot n \mathrm{~d} s=\iint_{R} \operatorname{div} F \mathrm{~d} x \mathrm{~d} y
$$

where

$$
\operatorname{div} F(x, y)=\frac{\partial}{\partial x}(2 x)+\frac{\partial}{\partial y}(-y)=2-1=1
$$

Thus,

$$
\oint_{\partial R} F \cdot n \mathrm{~d} s=\iint_{R} \mathrm{~d} x \mathrm{~d} y=\operatorname{area}(R) .
$$

To find the area of the region R, shown in Figure 4, observe that R is

Figure 4: Sketch of Region R in Problem 4
a parallelogram determined by the vectors $v=2 \widehat{i}-\widehat{j}$ and $w=\widehat{i}+2 \widehat{j}$. Thus,

$$
\operatorname{area}(R)=\|v \times w\|=5
$$

It the follows that

$$
\oint_{\partial R} F \cdot n \mathrm{~d} s=\iint_{R} \mathrm{~d} x \mathrm{~d} y=5 .
$$

5. Evaluate the line integral $\int_{\partial R}\left(x^{4}+y\right) \mathrm{d} x+\left(2 x-y^{4}\right) \quad \mathrm{d} y$, where R is the rectangular region

$$
R=\left\{(x, y) \in \mathbb{R}^{2} \mid-1 \leqslant x \leqslant 3,-2 \leqslant y \leqslant 1\right\},
$$

and ∂R is traversed in the counterclockwise sense.
Solution: Write
$\int_{\partial R}\left(x^{4}+y\right) \mathrm{d} x+\left(2 x-y^{4}\right) \mathrm{d} y=\int_{\partial R}\left(2 x-y^{4}\right) \mathrm{d} y-\left[-\left(x^{4}+y\right)\right] \mathrm{d} x$,
so that

$$
\int_{\partial R}\left(x^{4}+y\right) \mathrm{d} x+\left(2 x-y^{4}\right) \mathrm{d} y=\int_{\partial R} F \cdot n \mathrm{~d} s
$$

where F is the vector field

$$
F(x, y)=\left(2 x-y^{4}\right) \widehat{i}-\left(x^{4}+y\right) \widehat{j} .
$$

Then, by Green's Theorem in divergence form,

$$
\int_{\partial R}\left(x^{4}+y\right) \mathrm{d} x+\left(2 x-y^{4}\right) \mathrm{d} y=\iint_{R} \operatorname{div} F \mathrm{~d} x \mathrm{~d} y
$$

where

$$
\operatorname{div} F(x, y)=\frac{\partial}{\partial x}\left(2 x-y^{4}\right)-\frac{\partial}{\partial x}\left(x^{4}+y\right)=2-1=1 .
$$

It then follows that

$$
\int_{\partial R}\left(x^{4}+y\right) \mathrm{d} x+\left(2 x-y^{4}\right) \mathrm{d} y=\iint_{R} \mathrm{~d} x \mathrm{~d} y=\operatorname{area}(R)=12 .
$$

6. Integrate the function given by $f(x, y)=x y^{2}$ over the region, R, defined by:

$$
R=\left\{(x, y) \in \mathbb{R}^{2} \mid x \geqslant 0,0 \leqslant y \leqslant 4-x^{2}\right\} .
$$

Figure 5: Sketch of Region R in Problem 8

Solution: The region, R, is sketched in Figure 5. We evaluate the double integral, $\iint_{R} x y^{2} \mathrm{~d} x \mathrm{~d} y$, as an iterated integral

$$
\begin{aligned}
\iint_{R} x y^{2} \mathrm{~d} x \mathrm{~d} y & =\int_{0}^{2} \int_{0}^{4-x^{2}} x y^{2} \mathrm{~d} y \mathrm{~d} x \\
& =\int_{0}^{2} \int_{0}^{4-x^{2}} x y^{2} \mathrm{~d} y \mathrm{~d} x \\
& =\left.\int_{0}^{2} \frac{x y^{3}}{3}\right|_{0} ^{4-x^{2}} \mathrm{~d} x \\
& =\frac{1}{3} \int_{0}^{2} x\left(4-x^{2}\right)^{3} \mathrm{~d} x
\end{aligned}
$$

To evaluate the last integral, make the change of variables: $u=4-x^{2}$. We then have that $\mathrm{d} u=-2 x \mathrm{~d} x$ and

$$
\begin{aligned}
\iint_{R} x y^{2} \mathrm{~d} x \mathrm{~d} y & =\int_{0}^{2} \int_{0}^{4-x^{2}} x y^{2} \mathrm{~d} y \mathrm{~d} x \\
& =-\frac{1}{6} \int_{4}^{0} u^{3} \mathrm{~d} u \\
& =\frac{1}{6} \int_{0}^{4} u^{3} \mathrm{~d} u
\end{aligned}
$$

Thus,

$$
\iint_{R} x y^{2} \mathrm{~d} x \mathrm{~d} y=\frac{4^{4}}{24}=\frac{32}{3} .
$$

7. Let R denote the region in the plane defined by inside of the ellipse

$$
\begin{equation*}
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1, \tag{1}
\end{equation*}
$$

for $a>0$ and $b>0$.
(a) Evaluate the line integral $\oint_{\partial R} x \mathrm{~d} y-y \mathrm{~d} x$, where ∂R is the ellipse in (1) traversed in the positive sense.

Solution: A sketch of the ellipse is shown in Figure 6 for the case $a<b$.

Figure 6: Sketch of ellipse
A parametrization of the ellipse is given by

$$
x=a \cos t, \quad y=b \sin t, \quad \text { for } \quad 0 \leqslant t \leqslant 2 \pi .
$$

We then have that $\mathrm{d} x=-a \sin t \mathrm{~d} t$ and $\mathrm{d} y=b \cos t \mathrm{~d} t$. Therefore

$$
\begin{aligned}
\oint_{\partial R} x \mathrm{~d} y-y \mathrm{~d} x & =\int_{0}^{2 \pi}[a \cos t \cdot b \cos t-b \sin t \cdot(-a \cos t)] \mathrm{d} t \\
& =\int_{0}^{2 \pi}\left[a b \cos ^{2} t+a b \sin ^{2} t\right] \mathrm{d} t \\
& =a b \int_{0}^{2 \pi}\left(\cos ^{2} t+a b \sin ^{2} t\right) \mathrm{d} t \\
& =a b \int_{0}^{2 \pi} \mathrm{~d} t \\
& =2 \pi a b
\end{aligned}
$$

(b) Use your result from part (a) and the divergence form of Green's theorem to come up with a formula for computing the area of the region enclosed by the ellipse in (1).

Solution: Let $F(x, y)=x \widehat{i}+y \widehat{j}$. Then,

$$
\oint_{\partial R} x \mathrm{~d} y-y \mathrm{~d} x=\oint_{\partial R} F \cdot n \mathrm{~d} s
$$

Thus, by Green's Theorem in divergence form,

$$
\oint_{\partial R} x \mathrm{~d} y-y \mathrm{~d} x=\iint_{R} \operatorname{div} F \mathrm{~d} x \mathrm{~d} y
$$

where

$$
\operatorname{div} F(x, y)=\frac{\partial}{\partial x}(x)+\frac{\partial}{\partial y}(y)=2
$$

Consequently,

$$
\oint_{\partial R} x \mathrm{~d} y-y \mathrm{~d} x=2 \iint_{R} \mathrm{~d} x \mathrm{~d} y=2 \operatorname{area}(R) .
$$

It then follows that

$$
\operatorname{area}(R)=\frac{1}{2} \oint_{\partial R} x \mathrm{~d} y-y \mathrm{~d} x
$$

Thus,

$$
\operatorname{area}(R)=\pi a b
$$

by the result in part (a).
8. Evaluate the double integral $\int_{R} e^{-x^{2}} \mathrm{~d} x \mathrm{~d} y$, where R is the region in the $x y-$ plane sketched in Figure 7.

Figure 7: Sketch of Region R in Problem 8

Solution: Compute

$$
\begin{aligned}
\iint_{R} e^{-x^{2}} \mathrm{~d} x \mathrm{~d} y & =\int_{0}^{2} \int_{0}^{2 x} e^{-x^{2}} \mathrm{~d} y \mathrm{~d} x \\
& =\int_{0}^{2} 2 x e^{-x^{2}} \mathrm{~d} x \\
& =\left[-e^{-x^{2}}\right]_{0}^{2} \\
& =1-e^{-4}
\end{aligned}
$$

