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Solutions to Review Problems for Exam 3

1. Consider a wheel of radius a which is rolling on the x–axis in the xy–plane.
Suppose that the center of the wheel moves in the positive x–direction and a
constant speed vo. Let P denote a fixed point on the rim of the wheel.

(a) Give a path �(t) = (x(t), y(t)) giving the position of the P at any time t,
if P is initially at the point (0, 2a).

Solution: Let �(t) denote the angle that the ray from the center
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Figure 1: Circle

of the circle to the point (x(t), y(t)) makes with a vertical line

through the center. Then, vot = a�(t); so that �(t) =
vo
a
t and

x(t) = vot+ a sin(�(t))

and
y(t) = a+ a cos(�(t))

□

(b) Compute the velocity of P at any time t. When is the velocity of P
horizontal? What is the speed of P at those times?

Solution: The velocity vector is

�′(t) = (x′(t), y′(t)) = (vo + a�′(t) cos(�(t)),−a�′(t) sin(�(t)))

where
�′(t) =

vo
a
.

We then have that

�′(t) = (vo + vo cos(�(t)),−vo sin(�(t))).
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The velocity of P is horizontal when

sin(�(t)) = 0,

or
�(t) = n�,

where n is an integer; and when

cos(�(t)) ∕= −1.

We then get that the velocity of P is horizontal when

�(t) = 2k�

where k is an integer.
The speed at the points where the velocity if horizontal is then
equal to 2vo. □

2. Let C = {(x, y) ∈ ℝ2 ∣ x2 + y2 = 1, y ⩾ 0}; i.e., C is the upper unit semi–circle.
C can be parametrized by

�(�) = (�,
√

1− � 2) for − 1 ⩽ � ⩽ 1.

(a) Compute s(t), the arclength along C from (−1, 0) to the point �(t), for
0 ⩽ t ⩽ 1.

Solution: Compute �′(�) =

(
1,− �√

1− � 2

)
. for all � ∈ (−1, 1).

Then,

∥�′(�)∥ =

√
1 +

� 2

1− � 2
=

1√
1− � 2

.

It then follows that

s(t) =

∫ t

−1

1√
1− � 2

d� for − 1 ⩽ t ⩽ 1.

□

(b) Compute s′(t) for −1 < t < t and sketch the graph of s as function of t.

Solution: By the Fundamental Theorem of Calculus,

s′(t) =
1√

1− t2
for − 1 < t < 1.
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Note then that s′(t) > 0 for all t ∈ (−1, 1) and therefore s is
strictly increasing on (−1, 1).
Next, compute the derivative of s′(t) to get the second derivative
of s(t):

s′′(t) =
t

(1− t2)3/2
for − 1 < t < 1.

It then follows that s′′(t) < 0 for −1 < t < 0 and s′′(t) > 0 for
0 < t < 1. Thus, the graph of s = s(t) is concave down on (−1, 0)
and concave up on (0, 1).
Finally, observe that s(−1) = 0, s(0) = �/2 (the arc–length along
a quarter of the unit circle), and s(1) = � (the arc–length along
a semi–circle of unit radius). We can then sketch the graph of
s = s(t) as shown in Figure 2. □
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Figure 2: Sketch of s = s(t)

(c) Show that cos(� − s(t)) = t for all −1 ⩽ t ⩽ 1, and deduce that

sin(s(t)) =
√

1− t2 for all − 1 ⩽ t ⩽ 1.

Solution: Figure 3 shows the upper unit semicircle and a point
�(t) on it. Putting �(t) = �− s(t), then �(t) is the angle, in radi-
ans, that the ray from the origin to �(t) makes with the positive
x–axis. It then follows that

cos(�(t)) = t
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and
sin(�(t)) =

√
1− t2.

Since
sin(�(t)) = sin(� − s(t)) = sin(s(t),

the result follows. □
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Figure 3: Sketch of Semi–circle

3. Let C denote the unit circle traversed in the counterclockwise direction. Eval-

uate the line integral

∫
C

x

2
dy − y

2
dx.

Solution: Let F (x, y) =
x

2
î+

y

2
ĵ. Then,∫

C

x

2
dy − y

2
dx =

∫
C

F ⋅ n̂ ds.

Thus, by Green’s Theorem in divergence form,∫
C

x

2
dy − y

2
dx =

∫∫
R

divF dx dy,

where R is the unit disc bounded by C, and

divF (x, y) =
∂

∂x

(x
2

)
+

∂

∂y

(y
2

)
=

1

2
+

1

2
= 1.

Consequently,∫
C

x

2
dy − y

2
dx =

∫∫
R

dx dy = area(R) = �.

□
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4. Let F (x, y) = 2x î − y ĵ and R be the square in the xy–plane with vertices

(0, 0), (2,−1), (3, 1) and (1, 2). Evaluate

∮
∂R

F ⋅ n ds.

Solution: Apply Green’s Theorem in divergence form,∮
∂R

F ⋅ n ds =

∫∫
R

divF dx dy,

where

divF (x, y) =
∂

∂x
(2x) +

∂

∂y
(−y) = 2− 1 = 1.

Thus, ∮
∂R

F ⋅ n ds =

∫∫
R

dx dy = area(R).

To find the area of the region R, shown in Figure 4, observe that R is
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Figure 4: Sketch of Region R in Problem 4

a parallelogram determined by the vectors v = 2 î− ĵ and w = î+2 ĵ.
Thus,

area(R) = ∥v × w∥ = 5.

It the follows that∮
∂R

F ⋅ n ds =

∫∫
R

dx dy = 5.

□
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5. Evaluate the line integral

∫
∂R

(x4 + y) dx + (2x − y4) dy, where R is the

rectangular region

R = {(x, y) ∈ ℝ2 ∣ −1 ⩽ x ⩽ 3, −2 ⩽ y ⩽ 1},

and ∂R is traversed in the counterclockwise sense.

Solution: Write∫
∂R

(x4 + y) dx+ (2x− y4) dy =

∫
∂R

(2x− y4) dy− [−(x4 + y)] dx,

so that ∫
∂R

(x4 + y) dx+ (2x− y4) dy =

∫
∂R

F ⋅ n ds,

where F is the vector field

F (x, y) = (2x− y4) î− (x4 + y) ĵ.

Then, by Green’s Theorem in divergence form,∫
∂R

(x4 + y) dx+ (2x− y4) dy =

∫∫
R

divF dx dy,

where

divF (x, y) =
∂

∂x
(2x− y4)− ∂

∂x
(x4 + y) = 2− 1 = 1.

It then follows that∫
∂R

(x4 + y) dx+ (2x− y4) dy =

∫∫
R

dx dy = area(R) = 12.

□

6. Integrate the function given by f(x, y) = xy2 over the region, R, defined by:

R = {(x, y) ∈ ℝ2 ∣ x ⩾ 0, 0 ⩽ y ⩽ 4− x2}.
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Figure 5: Sketch of Region R in Problem 8

Solution: The region, R, is sketched in Figure 5. We evaluate the

double integral,

∫∫
R

xy2 dx dy, as an iterated integral

∫∫
R

xy2 dx dy =

∫ 2

0

∫ 4−x2

0

xy2 dy dx

=

∫ 2

0

∫ 4−x2

0

xy2 dy dx

=

∫ 2

0

xy3

3

∣∣∣4−x2
0

dx

=
1

3

∫ 2

0

x(4− x2)3 dx.

To evaluate the last integral, make the change of variables: u = 4−x2.
We then have that du = −2x dx and∫∫

R

xy2 dx dy =

∫ 2

0

∫ 4−x2

0

xy2 dy dx

= −1

6

∫ 0

4

u3 du

=
1

6

∫ 4

0

u3 du.
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Thus, ∫∫
R

xy2 dx dy =
44

24
=

32

3
.

□

7. Let R denote the region in the plane defined by inside of the ellipse

x2

a2
+
y2

b2
= 1, (1)

for a > 0 and b > 0.

(a) Evaluate the line integral

∮
∂R

x dy − y dx, where ∂R is the ellipse in (1)

traversed in the positive sense.

Solution: A sketch of the ellipse is shown in Figure 6 for the case
a < b.

y
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xa

Figure 6: Sketch of ellipse

A parametrization of the ellipse is given by

x = a cos t, y = b sin t, for 0 ⩽ t ⩽ 2�.
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We then have that dx = −a sin t dt and dy = b cos t dt. Therefore∮
∂R

x dy − y dx =

∫ 2�

0

[a cos t ⋅ b cos t− b sin t ⋅ (−a cos t)] dt

=

∫ 2�

0

[ab cos2 t+ ab sin2 t] dt

= ab

∫ 2�

0

(cos2 t+ ab sin2 t) dt

= ab

∫ 2�

0

dt

= 2�ab.

□

(b) Use your result from part (a) and the divergence form of Green’s theorem
to come up with a formula for computing the area of the region enclosed
by the ellipse in (1).

Solution: Let F (x, y) = x î+ y ĵ. Then,∮
∂R

x dy − y dx =

∮
∂R

F ⋅ n ds.

Thus, by Green’s Theorem in divergence form,∮
∂R

x dy − y dx =

∫∫
R

divF dx dy,

where

divF (x, y) =
∂

∂x
(x) +

∂

∂y
(y) = 2.

Consequently,∮
∂R

x dy − y dx = 2

∫∫
R

dx dy = 2 area(R).

It then follows that

area(R) =
1

2

∮
∂R

x dy − y dx.

Thus,
area(R) = �ab,

by the result in part (a). □
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8. Evaluate the double integral

∫
R

e−x
2

dx dy, where R is the region in the xy–

plane sketched in Figure 7.
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Figure 7: Sketch of Region R in Problem 8

Solution: Compute∫∫
R

e−x
2

dx dy =

∫ 2

0

∫ 2x

0

e−x
2

dy dx

=

∫ 2

0

2xe−x
2

dx

=
[
−e−x2

]2
0

= 1− e−4.

□


