Assignment #10

Due on Monday, October 26, 2009

Read Section 5.5 on *Introduction to Hypothesis Testing*, pp. 263–269, in Hogg, Craig and McKean.

Background and Definitions

Hypothesis Testing Terminology

- Hypothesis Testing. A statistical inference method that seeks to determine if a set of observations provided significant evidence to reject a hypothesis, known as a null hypothesis and denoted by H_o.
- Test Statistic. A test statistic, $T = T(X_1, X_2, \ldots, X_n)$, is a random variable based on observations, X_1, X_2, \ldots, X_n , and which is used to establish a criterion for rejecting H_o . The particular value of T given by a specific set of observations is denoted by \hat{T} .
- p-value. Assuming that H_o is true, the T statistic has certain probability distribution. The distribution of T can be determined exactly, or it can be approximated. This information can then be used to compute, or approximate, the probability of observing the value of \hat{T} , or more extreme values, under the assumption that H_o is true. This probability is known as the p-value of the test.
- Decision Criterion. Given certain small probability, α, known as a significance level, the observations provide significant evidence to reject H_o if p-value < α. Thus,

p-value $\langle \alpha \Rightarrow \mathbf{H}_o$ can be rejected

at an α significance level.

- **Type I Error.** A type I error is made when a hypothesis test yields the rejection of H_o when it is in fact true. The largest probability of making a type I error is denoted by α . This is the same as the significance level of the test.
- **Type II Error**. If the null hypothesis, H_o , is in fact false, but the hypothesis test does not yield the rejection of H_o , then a type II error is made. The probability of a type II error is denoted by β .
- Power of a Test. The probability that H_o is rejected when it is in fact false is called the power of the test and is denoted by γ . Note the $\gamma = 1 \beta$.

Do the following problems

- 1. We wish to determine whether a given coin is fair or not. Thus, we test the null hypothesis H_o : $p = \frac{1}{2}$ versus the alternative hypothesis H_1 : $p \neq \frac{1}{2}$. An experiment consisting of 10 independent flips of the coin and observing the number of heads, Y, in the 10 trials. The statistic Y is the test statistic for the test. The following rejection criterion is set: Reject H_o is either Y = 0 or Y = 10.
 - (a) What is the significance level of the test?
 - (b) If the coin is in fact loaded, with the probability of a head being 3/4, what is the power of the test?
- 2. Suppose that $Y \sim \text{binomial}(100, p)$ consider a test that rejects $H_o: p = 0.5$ in favor of the alternative hypothesis $H_1: p \neq 0.5$ provided that |Y 50| > 10. Use the Central Limit Theorem to answer the following questions:
 - (a) Determine α for this test.
 - (b) Estimate the power of the test as a function of p and graph it.
- 3. Let X_1, X_2, \ldots, X_8 denote a random sample of size n = 8 from a Poisson λ distribution and put $Y = \sum_{j=1}^{8} X_j$. Reject the null hypothesis H_o : $\lambda = 0.5$ in favor of the alternative H_1 : $\lambda > 0.5$ provided that $Y \ge 8$.
 - (a) Compute the significance level, α , of the test.
 - (b) Determine the power function, γ , as a function of λ .
- 4. Let X_1, X_2, \ldots, X_n denote a random sample of size n = 25 from a Normal μ , 100. Reject the null hypothesis H_o : $\mu = 0$ in favor of the alternative H_1 : $\mu = 1.5$ provided that $\overline{X}_n > 0.64$.
 - (a) Compute the significance level, α , of the test.
 - (b) What is the power of the test?

5. Let X_1, X_2, \ldots, X_n denote a random sample from a Normal μ, σ^2 . Consider testing the null hypothesis

$$\mathbf{H}_o: \ \mu = \mu_o \tag{1}$$

against the alternative H₁: $\mu \neq \mu_o$. Suppose that the test rejects H_o provided that $|\overline{X}_n - \mu_o| > b$ for some b > 0.

- (a) If the significance level of the test is α , determine the value of b. Suggestion: Use the t(n-1) distribution.
- (b) Using the value of b found in part (b), obtain a range of values, depending on the sample mean and standard deviation, \overline{X}_n and S_n , respectively, for μ_o such that the null hypothesis, H_o , in (1) is not rejected.