Assignment \#11

Due on Monday, November 9, 2009
Read Section 6.3 on Maximum Likelihood Tests, pp. 333-339, in Hogg, Craig and McKean.

Background and Definitions

Likelihood Functions and Likelihood Ratio Tests

- Likelihood Function. Given a random sample, $X_{1}, X_{2}, \ldots, X_{n}$, from a distribution with distribution function $f(x \mid \theta)$, either a pdf or a pmf, where θ is some unknown parameter (either a scalar or a vector parameter), the joint distribution the sample is given by

$$
f\left(x_{1}, x_{2}, \ldots, x_{n} \mid \theta\right)=f\left(x_{1} \mid \theta\right) \cdot f\left(x_{2} \mid \theta\right) \cdots f\left(x_{n} \mid \theta\right)
$$

by the independence condition in the definition of a random sample. If the random variables, $X_{1}, X_{2}, \ldots, X_{n}$, are discrete, $f\left(x_{1}, x_{2}, \ldots, x_{n} \mid \theta\right)$ gives the probability of observing the values

$$
X_{1}=x_{1}, X_{2}=x_{2}, \ldots, X_{n}=x_{n}
$$

under the assumption that the sample is taken from certain distribution with parameter θ. We can also interpret $f\left(x_{1}, x_{2}, \ldots, x_{n} \mid \theta\right)$ as measuring the likelihood that the parameter will be θ given that we have observed the values $x_{1}, x_{2}, \ldots, x_{n}$ in the sample. Thus, we call $f\left(x_{1}, x_{2}, \ldots, x_{n} \mid \theta\right)$ the likelihood function for the parameter θ given the observations $X_{1}=x_{1}, X_{2}=x_{2}, \ldots, X_{n}=x_{n}$, and denote it by $L\left(\theta \mid x_{1}, x_{2}, \ldots, x_{n}\right)$; that is,

$$
L\left(\theta \mid x_{1}, x_{2}, \ldots, x_{n}\right)=f\left(x_{1}, x_{2}, \ldots, x_{n} \mid \theta\right)
$$

- Likelihood Ratio Test. For a hypothesis test of

$$
\mathrm{H}_{o}: \theta \in \Omega_{o}
$$

against the alternative

$$
\mathrm{H}_{1}: \theta \in \Omega_{1}
$$

based on a random sample, $X_{1}, X_{2}, \ldots, X_{n}$, from a distribution with function $f(x \mid \theta)$, the likelihood ratio statistic, $\Lambda\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, is defined by

$$
\Lambda\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\frac{\sup _{\theta \in \Omega_{o}} L\left(\theta \mid x_{1}, x_{2}, \ldots, x_{n}\right)}{\sup _{\theta \in \Omega} L\left(\theta \mid x_{1}, x_{2}, \ldots, x_{n}\right)}
$$

where $\Omega=\Omega_{o} \cup \Omega_{1}$ with $\Omega_{o} \cap \Omega_{1}=\emptyset$. We can then define the rejection region

$$
R=\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right) \mid \Lambda\left(x_{1}, x_{2}, \ldots, x_{n}\right) \leqslant c\right\}
$$

for some critical value c with $0<c<1$. This defines a likelihood ratio test for H_{o} against H_{1}.

- Maximum Likelihood Estimator. A value, $\widehat{\theta}$, for the parameter θ such that

$$
L\left(\widehat{\theta} \mid x_{1}, x_{2}, \ldots, x_{n}\right)=\sup _{\theta \in \Omega} L\left(\theta \mid x_{1}, x_{2}, \ldots, x_{n}\right)
$$

is called a maximum likelihood estimator for θ, or an MLE for θ. Thus, if $\widehat{\theta}$ is an MLE for θ, then

$$
\Lambda\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\frac{L\left(\theta_{o} \mid x_{1}, x_{2}, \ldots, x_{n}\right)}{L\left(\widehat{\theta} \mid x_{1}, x_{2}, \ldots, x_{n}\right)}
$$

is the Likelihood ratio statistic for the test of $\mathrm{H}_{o}: \theta=\theta_{o}$ versus the alternative $\mathrm{H}_{1}: \theta \neq \theta_{o}$.

Do the following problems

1. Let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample from an $\operatorname{exponential}(\beta)$, for $\beta>0$.
(a) Find a maximum likelihood estimator, $\widehat{\beta}$, for β.
(b) Find the likelihood ratio statistic for the test of $\mathrm{H}_{o}: \beta=\beta_{o}$ versus the alternative $\mathrm{H}_{1}: \beta \neq \beta_{o}$.
2. Let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample from an exponential (β), for $\beta>0$, and H_{o} and H_{1} be as in Problem 1.
(a) Show that the likelihood ratio statistic, $\Lambda\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, found in part (b) of Problem 1 is of the form $e^{n} t^{n} e^{-n t}$, where $t=\widehat{\beta} / \beta_{o}$.
(b) Let $g(t)=e^{n} t^{n} e^{-n t}$ for $t \geqslant 0$. Show that $g(t) \leqslant g(1)=1$ for all $t \leqslant 0$, and sketch the graph of g.
(c) Show that the rejection region R : $\Lambda\left(x_{1}, x_{2}, \ldots, x_{n}\right) \leqslant c$, for $0<c<1$, is equivalent to the region

$$
\frac{1}{\beta_{o}} \bar{X}_{n}<c_{1} \quad \text { or } \quad \frac{1}{\beta_{o}} \bar{X}_{n}>c_{2}
$$

for critical values c_{1} and c_{2} satisfying $0<c_{1}<1<c_{2}$. Describe how you obtain c_{1} and c_{2} in terms of c.
3. Let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample from an $\operatorname{exponential}(\beta)$, for $\beta>0$, and H_{o} and H_{1} be as in Problem 1.
Define the statistic $Y=\frac{2}{\beta} \sum_{i=1}^{n} X_{i}$.
(a) Assuming that H_{o} is true, give the distribution of the random variable Y.
(b) Use the information gained in part (a) to come up with values of c_{1} and c_{2} such that the rejection region

$$
R: \quad \frac{1}{\beta_{o}} \bar{X}_{n}<c_{1} \quad \text { or } \quad \frac{1}{\beta_{o}} \bar{X}_{n}>c_{2}
$$

yields a test with significance level α.
4. Let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample from an $\operatorname{exponential}(\beta)$, for $\beta>0$, and H_{o} and H_{1} be as in Problem 1. Let Y denote the statistic defined in Problem 3.
(a) If $\beta \neq \beta_{o}$, give the distribution of the test statistic Y.
(b) Find an expression for the power function $\gamma(\beta)$ for the test for $\beta \neq \beta_{o}$.
(c) Sketch the graph of $\gamma(\beta)$ for $\beta_{o}=1, n=10$ and $\alpha=0.05$.
5. Let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample from an $\operatorname{Poisson}(\lambda)$, for $\lambda>0$.
(a) Find a maximum likelihood estimator, $\widehat{\lambda}$, for λ.
(b) Find the likelihood ratio statistic for the test of $\mathrm{H}_{o}: \lambda=\lambda_{o}$ versus the alternative $\mathrm{H}_{1}: \lambda \neq \lambda_{o}$.
(c) Show that the likelihood ratio test of H_{o} versus H_{1} is based on the test statistic $Y=\sum_{i=1}^{n} X_{i}$.
(d) Obtain the distribution of Y under the assumption that H_{o} is true.
(e) For $\lambda_{o}=2$ and $n=5$, find the significance level of the the test that rejects H_{o} if either $Y \leqslant 4$ or $Y \geqslant 7$.

