Solutions to Assignment \#11

1. Let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample from an exponential (β), for $\beta>0$.
(a) Find a maximum likelihood estimator, $\widehat{\beta}$, for β.

Solution: The likelihood function is

$$
L\left(\beta \mid x_{1}, x_{2}, \ldots, x_{n}\right)=f\left(x_{1} \mid \beta\right) \cdot f\left(x_{2} \mid \beta\right) \cdots f\left(x_{n} \mid \beta\right)
$$

where

$$
f(x \mid \beta)= \begin{cases}\frac{1}{\beta} e^{-x / \beta} & \text { if } x>0 \\ 0 & \text { otherwise }\end{cases}
$$

It then follows that

$$
L\left(\beta \mid x_{1}, x_{2}, \ldots, x_{n}\right)=\frac{1}{\beta^{n}} e^{-y / \beta}
$$

where $y=\sum_{i=1}^{n} x_{i}$.
In order to find the MLE for β, we maximize the funtion

$$
\ell(\beta)=\ln \left(L\left(\beta \mid x_{1}, x_{2}, \ldots, x_{n}\right)\right)=-\frac{y}{\beta}-n \ln \beta, \quad \text { for } \beta>0
$$

Taking derivatives we obtain

$$
\ell^{\prime}(\beta)=\frac{y}{\beta^{2}}-\frac{n}{\beta}
$$

and

$$
\ell^{\prime \prime}(\beta)=-\frac{2 y}{\beta^{3}}+\frac{n}{\beta^{2}}
$$

for $\beta>0$. Thus, $\widehat{\beta}=\frac{1}{n} y$ is a critical point with

$$
\ell^{\prime \prime}(\widehat{\beta})=-\frac{n}{\widehat{\beta}^{2}}<0
$$

Hence, $\widehat{\beta}=\frac{1}{n} \sum_{i=1}^{n} X_{1}=\bar{X}_{n}$, the sample mean, is the MLE for β.
(b) Find the likelihood ratio statistic for the test of $\mathrm{H}_{o}: \beta=\beta_{o}$ versus the alternative $\mathrm{H}_{1}: \beta \neq \beta_{o}$.

Solution: The likelihood ratio statistic in this case is

$$
\begin{aligned}
\Lambda\left(x_{1}, x_{2}, \ldots, x_{n}\right) & =\frac{L\left(\beta_{o} \mid x_{1}, x_{2}, \ldots, x_{n}\right)}{L\left(\widehat{\beta} \mid x_{1}, x_{2}, \ldots, x_{n}\right)} \\
& =\left(\frac{\widehat{\beta}}{\beta_{o}}\right)^{n} e^{-y / \beta_{o}+y / \widehat{\beta}} \\
& =\left(\frac{\widehat{\beta}}{\beta_{o}}\right)^{n} e^{-n \widehat{\beta} / \beta_{o}+n}
\end{aligned}
$$

since $\widehat{\beta}=\frac{y}{n}$, where $y=\sum_{i=1}^{n} x_{i}$.
We then have that

$$
\begin{equation*}
\Lambda\left(x_{1}, x_{2}, \ldots, x_{n}\right)=e^{n}\left(\frac{\widehat{\beta}}{\beta_{o}}\right)^{n} e^{-n \widehat{\beta} / \beta_{o}} \tag{1}
\end{equation*}
$$

2. Let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample from an $\operatorname{exponential}(\beta)$, for $\beta>0$, and H_{o} and H_{1} be as in Problem 1.
(a) Show that the likelihood ratio statistic, $\Lambda\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, found in part (b) of Problem 1 is of the form $e^{n} t^{n} e^{-n t}$, where $t=\widehat{\beta} / \beta_{0}$.

Solution: Substituting t for $\widehat{\beta} / \beta_{o}$ in equation (1) we obtain

$$
\Lambda\left(x_{1}, x_{2}, \ldots, x_{n}\right)=e^{n} t^{n} e^{-n t} \quad \text { for } t>0
$$

(b) Let $g(t)=e^{n} t^{n} e^{-n t}$ for $t \geqslant 0$. Show that $g(t) \leqslant g(1)=1$ for all $t \leqslant 0$, and sketch the graph of g.

Solution: Compute the derivatives of g to get

$$
\begin{aligned}
g^{\prime}(t) & =n e^{n} t^{n-1} e^{-n t}-n e^{n} t^{n} e^{-n t}=n e^{n} t^{n-1}(1-t) e^{-n t}, \text { and } \\
g^{\prime \prime}(t) & =n(n-1) e^{n} t^{n-2} e^{-n t}-2 n^{2} e^{n} t^{n-1} e^{-n t}+n^{2} e^{n} t^{n} e^{-n t}
\end{aligned}
$$

Thus, for $n>1, g$ has two critical points, $t=0$ and $t=1$. Observe that, for $n>2, g^{\prime \prime}(0)=0$ and $g^{\prime \prime}(1)=-n<0$. So that, g has a maximum at $t=1$, which we wanted to show.
To sketch the graph of g, observe that for $n \geqslant 1, g(0)$, and, by L'Hospital's rule,

$$
\lim _{t \rightarrow \infty} g(t)=e^{n} \lim _{t \rightarrow \infty} \frac{t^{n}}{e^{n t}}=0
$$

A sketch of the graph of $g(t)$, for $n=10$ is shown in Figure 1 .

Figure 1: Sketch of graph of $g(t)$ for $n=10$ and $0 \leqslant t \leqslant 4$
(c) Show that the rejection region R : $\Lambda\left(x_{1}, x_{2}, \ldots, x_{n}\right) \leqslant c$, for $0<c<1$, is equivalent to the region

$$
\frac{1}{\beta_{o}} \bar{X}_{n}<c_{1} \quad \text { or } \quad \frac{1}{\beta_{o}} \bar{X}_{n}>c_{2}
$$

for critical values c_{1} and c_{2} satisfying $0<c_{1}<1 / n<c_{2}$. Describe how you obtain c_{1} and c_{2} in terms of c.

Solution: By examining the graph of $\Lambda(t)=g(t)$ in Figure 1 we see that for $0<c<1$, the horizontal line at level c meets the graph of $g(t)$ at two points with t-coordinates at t_{1} and t_{2} with $0<t_{1}<1<t_{2}$; that is, $\Lambda\left(t_{1}\right)=\Lambda\left(t_{2}\right)=c$. Furthermore, since $g(t)$ is strictly increasing for $t<1$, and strictly decreasing for $t>1$, it follows that

$$
\Lambda(t) \leqslant c \quad \text { iff } \quad t \leqslant t_{1} \quad \text { or } t \geqslant t_{2}
$$

where

$$
t=\frac{\widehat{\beta}}{\beta_{o}}=\frac{n \bar{X}_{n}}{\beta_{o}}
$$

In then follows that the LRT rejects H_{o} if

$$
\frac{\bar{X}_{n}}{\beta_{o}} \leqslant \frac{t_{1}}{n} \text { or } \frac{\bar{X}_{n}}{\beta_{o}} \geqslant \frac{t_{2}}{n}
$$

which was to be shown.
3. Let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample from an exponential (β), for $\beta>0$, and H_{o} and H_{1} be as in Problem 1.
Define the statistic $Y=\frac{2}{\beta} \sum_{i=1}^{n} X_{i}$.
(a) Assuming that H_{o} is true, give the distribution of the random variable Y.

Solution: Since the X_{i} s are iid random variables, the mgf of Y is given by

$$
\begin{aligned}
M_{Y}(t) & =\left[M_{X_{1}}\left(\frac{2 t}{\beta}\right)\right]^{n} \\
& =\left[\frac{1}{1-\beta(2 t / \beta)}\right]^{n} \\
& =\left[\frac{1}{1-2 t}\right]^{2 n / 2}
\end{aligned}
$$

for $t<\frac{1}{2}$, which is the mgf of a χ^{2} distribution with $2 n$ degrees of fredom. It then follows that

$$
Y \sim \chi^{2}(2 n)
$$

regardless of what β is.
(b) Use the information gained in part (a) to come up with values of c_{1} and c_{2} such that the rejection region

$$
R: \quad \frac{1}{\beta_{o}} \bar{X}_{n}<c_{1} \quad \text { or } \quad \frac{1}{\beta_{o}} \bar{X}_{n}>c_{2}
$$

yields a test with significance level α.
Solution: Observe that

$$
\frac{1}{\beta_{o}} \bar{X}_{n}=\frac{1}{2 n} Y
$$

if $\beta=\beta_{o}$. Consequently,

$$
\begin{aligned}
\alpha & =\mathrm{P}\left(\frac{1}{\beta_{o}} \bar{X}_{n}<c_{1} \quad \text { or } \quad \frac{1}{\beta_{o}} \bar{X}_{n}>c_{2}\right) \\
& =\mathrm{P}\left(\frac{1}{2 n} Y<c_{1} \quad \text { or } \quad \frac{1}{2 n} Y>c_{2}\right)
\end{aligned}
$$

where $Y \sim \chi^{2}(2 n)$.
Thus,

$$
\begin{aligned}
\alpha & =1-\mathrm{P}\left(c_{1} \leqslant \frac{1}{2 n} Y \leqslant c_{2}\right) \\
& =1-\mathrm{P}\left(2 n c_{1} \leqslant Y \leqslant 2 n c_{2}\right) \\
& =1-\mathrm{P}\left(2 n c_{1}<Y \leqslant 2 n c_{2}\right) \\
& =1-\left(F_{Y}\left(2 n c_{2}\right)-F_{Y}\left(2 n c_{1}\right)\right)
\end{aligned}
$$

where F_{Y} denotes the cdf of $Y \sim \chi^{2}(2 n)$. Thus, to get an LRT with significance level α, we need to have

$$
F_{Y}\left(2 n c_{2}\right)-F_{Y}\left(2 n c_{1}\right)=1-\alpha .
$$

we may accomplish this by setting

$$
F_{Y}\left(2 n c_{1}\right)=\frac{\alpha}{2} \quad \text { and } \quad F_{Y}\left(2 n c_{2}\right)=1-\frac{\alpha}{2} .
$$

we therefore get that

$$
\begin{equation*}
c_{1}=\frac{1}{2 n} F_{Y}^{-1}(\alpha / 2) \quad \text { and } \quad c_{2}=\frac{1}{2 n} F_{Y}^{-1}(1-(\alpha / 2)) . \tag{2}
\end{equation*}
$$

4. Let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample from an exponential (β), for $\beta>0$, and H_{o} and H_{1} be as in Problem 1. Let Y denote the statistic defined in Problem 3.
(a) If $\beta \neq \beta_{o}$, give the distribution of the test statistic Y.

Answer: The answer obtained in part (a) of Problem 3 is independent of β. Hence, $Y \sim \chi^{2}(2 n)$.
(b) Find an expression for the power function $\gamma(\beta)$ for the test for $\beta \neq \beta_{o}$.

Solution: $\gamma(\beta)$ is the probability that the test will reject the null hypothesis when $\beta \neq \beta_{o}$. It then follows that

$$
\begin{aligned}
\gamma(\beta) & =\mathrm{P}\left(\frac{1}{\beta_{o}} \bar{X}_{n}<c_{1} \quad \text { or } \quad \frac{1}{\beta_{o}} \bar{X}_{n}>c_{2}\right) \\
& =\mathrm{P}\left(\frac{1}{2 n} \frac{\beta}{\beta_{o}} Y<c_{1} \quad \text { or } \quad \frac{1}{2 n} \frac{\beta}{\beta_{o}} Y>c_{2}\right),
\end{aligned}
$$

where $Y \sim \chi^{2}(2 n)$. Thus,

$$
\begin{aligned}
\gamma(\beta) & =1-\mathrm{P}\left(2 n c_{1} \frac{\beta_{o}}{\beta} \leqslant Y \leqslant 2 n c_{2} \frac{\beta_{o}}{\beta}\right) \\
& =1-\mathrm{P}\left(2 n c_{1} \frac{\beta_{o}}{\beta}<Y \leqslant 2 n c_{2} \frac{\beta_{o}}{\beta}\right) \\
& =1-\left[F_{Y}\left(2 n c_{2} \frac{\beta_{o}}{\beta}\right)-F_{Y}\left(2 n c_{1} \frac{\beta_{o}}{\beta}\right)\right]
\end{aligned}
$$

(c) Sketch the graph of $\gamma(\beta)$ for $\beta_{o}=1, n=10$ and $\alpha=0.05$.

Solution: Since $\alpha=0.05$, we get from the formulas in (2) that

$$
2 n c_{1}=F_{Y}^{-1}(0.025) \quad \text { and } \quad 2 n c_{2}=F_{Y}^{-1}(0.975)
$$

where $Y \sim \chi^{2}(20)$. Thus,

$$
2 n c_{1} \approx 9.59 \text { and } 2 n c_{2} \approx 34.17
$$

We then have that

$$
\gamma(\beta) \approx 1-\left[F_{Y}\left(\frac{34.17}{\beta}\right)-F_{Y}\left(\frac{9.59}{\beta}\right)\right] .
$$

A sketch of the graph of this function for values of β between 0 and 4 is shown in Figure 2 on page 7.

Figure 2: Sketch of graph of $\gamma(\beta)$ for $0 \leqslant \beta \leqslant 4$
5. Let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample from an $\operatorname{Poisson}(\lambda)$, for $\lambda>0$.
(a) Find a maximum likelihood estimator, $\widehat{\lambda}$, for λ.

Solution: The likelihood function in this case is

$$
L\left(\lambda \mid x_{1}, x_{2}, \ldots, x_{n}\right)=\frac{\lambda^{y}}{x_{1}!x_{2}!\cdots x_{n}!} e^{-n \lambda}
$$

where $y=\sum_{i=1}^{n} x_{i}$. To find the MLE for λ, we maximize the function

$$
\ell(\lambda)=y \ln \lambda-n \lambda-\ln \left(x_{1}!x_{2}!\cdots x_{n}!\right) .
$$

Taking derivatives we obtain

$$
\ell^{\prime}(\lambda)=\frac{y}{\lambda}-n
$$

and

$$
\ell^{\prime \prime}(\lambda)=-\frac{y}{\lambda^{2}} .
$$

Thus, $\widehat{\lambda}=\frac{1}{n} y$ is a critical point of ℓ with $\ell^{\prime \prime}(\widehat{\lambda})<0$. It then follows that

$$
\widehat{\lambda}=\bar{X}_{n}
$$

is the MLE for λ.
(b) Find the likelihood ratio statistic for the test of $\mathrm{H}_{o}: \lambda=\lambda_{o}$ versus the alternative $\mathrm{H}_{1}: \lambda \neq \lambda_{o}$.

Solution: Compute

$$
\begin{aligned}
\Lambda\left(x_{1}, x_{2}, \ldots, x_{n}\right) & =\frac{L\left(\lambda_{o} \mid x_{1}, x_{2}, \ldots, x_{n}\right)}{L\left(\widehat{\lambda} \mid x_{1}, x_{2}, \ldots, x_{n}\right)} \\
& =\frac{\lambda_{o}^{y} e^{-n \lambda_{o}}}{\widehat{\lambda}^{y} e^{-n \widehat{\lambda}}} \\
& =\frac{1}{t^{n \lambda_{o} t} e^{n \lambda_{o}(1-t)}},
\end{aligned}
$$

where we have set $t=\frac{\widehat{\lambda}}{\lambda_{o}}$ and used $y=n \widehat{\lambda}=n \lambda_{o} t$.
(c) Show that the likelihood ratio test of H_{o} versus H_{1} is based on the test statistic $Y=\sum_{i=1}^{n} X_{i}$.

Solution: From our solution to part (b) of this problem, we see that, for a given sample size, n, and value of λ_{o}, the likelihood ratio statistic is a function of $t=\hat{\lambda} / \lambda_{o}, \Lambda(t)=g(t)$, where

$$
g(t)=\frac{1}{t^{n \lambda_{o} t} e^{n \lambda_{o}(1-t)}}, \quad \text { for } t>0
$$

Note that $g(t)$ has a maximum value of 1 at $t=1$. To see why this is so, let $h(t)=\ln (g(t))$ so that

$$
h(t)=-n \lambda_{o} t \ln t-n \lambda_{o}(1-t)
$$

and its derivatives are

$$
h^{\prime}(t)=-n \lambda_{o} \ln t
$$

and

$$
h^{\prime \prime}(t)=-\frac{n \lambda_{o}}{t}
$$

for $t>0$. It then follows that $t=1$ is the only critical point for $h(t)$ in $(0, \infty)$ and $h^{\prime \prime}(1)<0$. It then follows that $h(t)$ has a maximum at $t=1$ and consequently $g(t)$ has a maximum at $t=1$. Observe also that

$$
\lim _{t \rightarrow 0^{+}} h(t)=-n \lambda_{o}
$$

so that $g(0)=e^{-n \lambda_{o}}$, and

$$
\lim _{t \rightarrow \infty} h(t)=-\infty
$$

so that

$$
\lim _{t \rightarrow \infty} g(t)=0
$$

We therefore get that the graph of $g(t)$ looks like the one sketched in Figure 3 on page 10, which is the sketch of the graph of $g(t)$ for $\lambda_{o}=1$ and $n=10$. We then see that for any c such that $0<c<1$, there exist two values of t, t_{1} and t_{2}, such that $0<t_{1}<1<t_{2}$, and

$$
g\left(t_{1}\right)=g\left(t_{2}\right)=c
$$

Figure 3: Sketch of graph of $g(t)$ for $0<t<4, \lambda_{o}=1$, and $n=10$

Furthermore,

$$
g(t) \leqslant c \quad \text { for } t \leqslant t_{1} \text { or } t \geqslant t_{2}
$$

We then see that the LRT with rejection region

$$
R: \quad \Lambda\left(x_{1}, x_{2}, \ldots, x_{n}\right) \leqslant c
$$

is equivalent to the test that rejects H_{o} if

$$
\frac{\hat{\lambda}}{\lambda_{o}} \leqslant t_{1} \quad \text { or } \quad \frac{\hat{\lambda}}{\lambda_{o}} \geqslant t_{2}
$$

or

$$
Y \leqslant n \lambda_{o} t_{1} \text { or } Y \geqslant n \lambda_{o} t_{2} .
$$

Hence, the LRT may be based on the test statistic $Y=\sum_{i=1}^{n} X_{i}$.
(d) Obtain the distribution of Y under the assumption that H_{o} is true.

Answer: The distribution of Y is $\operatorname{Poisson}\left(n \lambda_{o}\right)$ if H_{o} is true.
(e) For $\lambda_{o}=2$ and $n=5$, find the significance level of the the test that rejects H_{o} if either $Y \leqslant 4$ or $Y \geqslant 7$.

Solution: If $\lambda_{o}=2$ and $n=5$, then $Y \sim \operatorname{Poisson(10)}$ if H_{o} is true. Then,

$$
\begin{aligned}
\alpha & =\mathrm{P}(Y \leqslant 4 \text { or } Y \geqslant 7) \\
& =\mathrm{P}(Y \leqslant 4)+\mathrm{P} Y \geqslant 7) \\
& =\mathrm{P}(Y \leqslant 4)+1-\mathrm{P}(Y \leqslant 6) \\
& =1-\left(\frac{10^{5}}{5!}+\frac{10^{6}}{6!}\right) e^{-10} \\
& \approx 0.9 .
\end{aligned}
$$

