Assignment #12

Due on Friday, November 13, 2009

Read Section 6.3 on *Maximum Likelihood Tests*, pp. 333–339, in Hogg, Craig and McKean.

Do the following problems

- 1. Suppose that you observe *n* iid Bernoulli(*p*) random variables, denoted by X_1, X_2, \ldots, X_n . Find the LRT rejection region for the test of $H_o: p \leq p_o$ versus $H_1: p > p_o$ in terms of the test statistic $Y = \sum_{i=1}^n X_i$.
- 2. Consider the likelihood ratio test for $H_o: p = p_o$ versus $H_1: p = p_1$, where $p_o \neq p_1$, based on a random sample X_1, X_2, \ldots, X_n from a Bernoulli(p) distribution for $0 . Show that, if <math>p_1 > p_o$, then the likelihood ratio statistic for the test is a monotonically decreasing function of $Y = \sum_{i=1}^{n} X_i$. Conclude, therefore, that if the test rejects H_o at the significance level α for an observed value \hat{y} of Y, it will also rejects H_o at that level for $Y > \hat{y}$.
- 3. We wish to use an LRT to test the hypothesis $H_o: \mu = \mu_o$ against the alternative $H_1: \mu \neq \mu_o$ based on a random sample, X_1, X_2, \ldots, X_n , from a normal $(\mu, 1)$ distribution.
 - (a) Give the maximum likelihood estimator, $\hat{\mu}$, for μ based on the sample.
 - (b) Give the likelihood ratio statistic for the test.
 - (c) Express the LRT rejection region in terms of the sample mean \overline{X}_n .
- 4. Let X_1, X_2, \ldots, X_n denote a random sample from a uniform $(0, \theta)$ distribution for some parameter $\theta > 0$.
 - (a) Give the likelihood function $L(\theta \mid x_1, x_2, \ldots, x_n)$.
 - (b) Give the maximum likelihood estimator for θ .

Math 152. Rumbos

- 5. Let *R* denote the rejection region for an LRT of $H_o: \theta = \theta_o$ versus $H_1: \theta = \theta_1$ based on a random sample, X_1, X_2, \ldots, X_n , from continuous distribution with pdf $f(x \mid \theta)$. Let $L(\theta \mid x_1, x_2, \ldots, x_n)$ denote the likelihood function. Suppose the LRT has significance level α .
 - (a) Explain why

$$\alpha = \int_R L(\theta_o \mid x_1, x_2, \dots, x_n) \, \mathrm{d}x_1 \, \mathrm{d}x_2 \cdots \, \mathrm{d}x_n.$$

(b) Explain why the power of the test is

$$\gamma(\theta_1) = \int_R L(\theta_1 \mid x_1, x_2, \dots, x_n) \, \mathrm{d}x_1 \, \mathrm{d}x_2 \cdots \, \mathrm{d}x_n.$$

(c) Explain why

$$\alpha \leqslant c\gamma(\theta_1),$$

where c is the critical value used in the definition of the rejection region, R, for the LRT.