Assignment \#13

Due on Monday, November 16, 2009
Read Section 6.3 on Maximum Likelihood Tests, pp. 333-339, in Hogg, Craig and McKean.
Read Section 8.1 on Most Powerful Tests, pp. 419-427, in Hogg, Craig and McKean. Read Section 8.2 on Uniformly Most Powerful Tests, pp. 429-435, in Hogg, Craig and McKean.

Do the following problems

1. Consider a test of the simple hypotheses

$$
\mathrm{H}_{o}: \theta=\theta_{o} \quad \text { versus } \quad \mathrm{H}_{1}: \theta=\theta_{1}
$$

based on a random sample from a distribution with $\operatorname{pmf} f(x \mid \theta)$, for $x=$ $1,2, \ldots, 7$. The values of the likelihood function at θ_{o} and θ_{1} are given in the table below.

x	1	2	3	4	5	6	7
$L\left(\theta_{o}\right)$	0.01	0.01	0.01	0.01	0.01	0.01	0.94
$L\left(\theta_{1}\right)$	0.06	0.05	0.04	0.03	0.02	0.01	0.79

Use the Neyman-Pearson Lemma to find the most powerful test for H_{o} versus H_{1} with significance level $\alpha=0.04$. Compute the probability of Type II error for this test.
2. Let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample from a $\operatorname{Poisson}(\lambda)$ distribution.
(a) Find the most powerful test for testing

$$
\mathrm{H}_{o}: \lambda=\lambda_{o} \quad \text { versus } \quad \mathrm{H}_{1}: \lambda=\lambda_{1},
$$

for $\lambda_{1}>\lambda_{o}$.
(b) Show that the test found in part (a) is uniformly most powerful for testing

$$
\mathrm{H}_{o}: \lambda=\lambda_{o} \quad \text { versus } \quad \mathrm{H}_{1}: \lambda>\lambda_{o} .
$$

3. Given a random sample, $X_{1}, X_{2}, \ldots, X_{n}$, from a distribution with distribution function $f(x \mid \theta)$. We say that a statistic $T=T\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ is sufficient for θ is the joint distribution $f\left(x_{1}, x_{2}, \ldots, x_{n} \mid \theta\right)$ can be written in the form

$$
f\left(x_{1}, x_{2}, \ldots, x_{n} \mid \theta\right)=g(T, \theta) h\left(x_{1}, x_{2}, \ldots, x_{n}\right)
$$

for some functions $g: \mathbb{R}^{2} \rightarrow \mathbb{R}$ and $h: \mathbb{R}^{n} \rightarrow \mathbb{R}$.
Let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample from a $\operatorname{Poisson}(\lambda)$ distribution. Find a sufficient statistic for λ. Justify your answer based on the definition given above.
4. Suppose that $X_{1}, X_{2}, \ldots, X_{n}$ forms a random sample from distribution with distribution function $f(x \mid \theta)$.
(a) Show that if T is a sufficient statistic for θ, then the likelihood ratio statistic for the test of

$$
\mathrm{H}_{o}: \theta=\theta_{o} \quad \text { versus } \mathrm{H}_{1}: \theta=\theta_{1}
$$

is a function of T.
(b) Explain how knowledge of the distribution of T under H_{o} may be used to choose a rejection region that yields the most powerful test at level α.
5. Derive a likelihood ratio test for

$$
\mathrm{H}_{o}: \sigma^{2}=\sigma_{o}^{2} \quad \text { versus } \mathrm{H}_{1}: \sigma^{2} \neq \sigma_{o}^{2}
$$

based on a sample from a normal $\left(\mu, \sigma^{2}\right)$ distribution.

