Assignment #13

Due on Monday, November 16, 2009

Read Section 6.3 on *Maximum Likelihood Tests*, pp. 333–339, in Hogg, Craig and McKean.

Read Section 8.1 on *Most Powerful Tests*, pp. 419–427, in Hogg, Craig and McKean. **Read** Section 8.2 on *Uniformly Most Powerful Tests*, pp. 429–435, in Hogg, Craig and McKean.

Do the following problems

1. Consider a test of the simple hypotheses

 $H_o: \theta = \theta_o$ versus $H_1: \theta = \theta_1$

based on a random sample from a distribution with pmf $f(x \mid \theta)$, for x = 1, 2, ..., 7. The values of the likelihood function at θ_o and θ_1 are given in the table below.

			3				
$L(\theta_o)$	0.01	0.01	0.01	0.01	0.01	0.01	0.94
$L(\theta_1)$	0.06	0.05	0.04	0.03	0.02	0.01	0.79

Use the Neyman–Pearson Lemma to find the most powerful test for H_o versus H_1 with significance level $\alpha = 0.04$. Compute the probability of Type II error for this test.

- 2. Let X_1, X_2, \ldots, X_n be a random sample from a Poisson(λ) distribution.
 - (a) Find the most powerful test for testing

$$\mathbf{H}_o: \lambda = \lambda_o \quad \text{versus} \quad \mathbf{H}_1: \lambda = \lambda_1,$$

for $\lambda_1 > \lambda_o$.

(b) Show that the test found in part (a) is uniformly most powerful for testing

 $\mathbf{H}_o: \lambda = \lambda_o \quad \text{versus} \quad \mathbf{H}_1: \lambda > \lambda_o.$

Math 152. Rumbos

3. Given a random sample, X_1, X_2, \ldots, X_n , from a distribution with distribution function $f(x \mid \theta)$. We say that a statistic $T = T(X_1, X_2, \ldots, X_n)$ is **sufficient** for θ is the joint distribution $f(x_1, x_2, \ldots, x_n \mid \theta)$ can be written in the form

$$f(x_1, x_2, \dots, x_n \mid \theta) = g(T, \theta)h(x_1, x_2, \dots, x_n),$$

for some functions $g: \mathbb{R}^2 \to \mathbb{R}$ and $h: \mathbb{R}^n \to \mathbb{R}$.

Let X_1, X_2, \ldots, X_n be a random sample from a Poisson(λ) distribution. Find a sufficient statistic for λ . Justify your answer based on the definition given above.

- 4. Suppose that X_1, X_2, \ldots, X_n forms a random sample from distribution with distribution function $f(x \mid \theta)$.
 - (a) Show that if T is a sufficient statistic for θ , then the likelihood ratio statistic for the test of

 $H_o: \theta = \theta_o$ versus $H_1: \theta = \theta_1$

is a function of T.

- (b) Explain how knowledge of the distribution of T under H_o may be used to choose a rejection region that yields the most powerful test at level α .
- 5. Derive a likelihood ratio test for

$$H_o: \sigma^2 = \sigma_o^2$$
 versus $H_1: \sigma^2 \neq \sigma_o^2$

based on a sample from a normal (μ, σ^2) distribution.