Solutions to Assignment \#13

1. Consider a test of the simple hypotheses

$$
\mathrm{H}_{o}: \theta=\theta_{o} \quad \text { versus } \quad \mathrm{H}_{1}: \theta=\theta_{1}
$$

based on a random sample from a distribution with $\operatorname{pmf} f(x \mid \theta)$, for $x=$ $1,2, \ldots, 7$. The values of the likelihood function at θ_{o} and θ_{1} are given in the table below.

x	1	2	3	4	5	6	7
$L\left(\theta_{o}\right)$	0.01	0.01	0.01	0.01	0.01	0.01	0.94
$L\left(\theta_{1}\right)$	0.06	0.05	0.04	0.03	0.02	0.01	0.79

Use the Neyman-Pearson Lemma to find the most powerful test for H_{o} versus H_{1} with significance level $\alpha=0.04$. Compute the probability of Type II error for this test.

Solution: Table 1 shows the values of the likelihood ratio statistic in the third row. Observe that if we let $c=1 / 3$ and R the region defined by $\Lambda \leqslant c$, then

$$
\alpha=\mathrm{P}\left(\Lambda \leqslant 1 / 3 \mid \theta=\theta_{o}\right)=0.04
$$

Thus, by the Neyman-Pearson Lemma, the test that rejects H_{o} if

x	1	2	3	4	5	6	7
$L\left(\theta_{o}\right)$	0.01	0.01	0.01	0.01	0.01	0.01	0.94
$L\left(\theta_{1}\right)$	0.06	0.05	0.04	0.03	0.02	0.01	0.79
$L\left(\theta_{o}\right) / L\left(\theta_{1}\right)$	$1 / 6$	$1 / 5$	$1 / 4$	$1 / 3$	$1 / 2$	1	1.19

Table 1: Likelihood ratios

$$
\frac{L\left(\theta_{o}\right)}{L\left(\theta_{1}\right)} \leqslant \frac{1}{3}
$$

is the most powerful test at significance level $\alpha=0.04$.
The power of the test is

$$
\gamma\left(\theta_{1}\right)=\mathrm{P}\left(\Lambda \leqslant 1 / 3 \mid \theta=\theta_{1}\right)=0.18 .
$$

Thus, the probability of a Type II error is $1-\gamma\left(\theta_{1}\right)=82 \%$.
2. Let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample from a $\operatorname{Poisson}(\lambda)$ distribution.
(a) Find the most powerful test for testing

$$
\mathrm{H}_{o}: \lambda=\lambda_{o} \quad \text { versus } \quad \mathrm{H}_{1}: \lambda=\lambda_{1}
$$

for $\lambda_{1}>\lambda_{o}$.
Solution: According to the Neyman-Pearson Lemma, the most powerful test is the LRT. To find the LRT rejection region, we first compute the likelihood ratio statistic

$$
\Lambda\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\frac{L\left(\lambda_{o} \mid x_{1}, x_{2}, \ldots, x_{n}\right)}{L\left(\lambda_{1} \mid x_{1}, x_{2}, \ldots, x_{n}\right)}
$$

where

$$
L\left(\lambda \mid x_{1}, x_{2}, \ldots, x_{n}\right)=\frac{\lambda^{y}}{x_{1}!x_{2}!\cdots x_{n}!} e^{-n \lambda}
$$

for $y=\sum_{i=1}^{n} x_{i}$.
We then have that

$$
\Lambda\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\frac{\lambda_{o}^{y} e^{-n \lambda_{o}}}{\lambda_{1}^{y} e^{-n \lambda_{1}}}=\frac{e^{n \lambda_{1}}}{e^{n \lambda_{o}}}\left(\frac{\lambda_{o}}{\lambda_{1}}\right)^{y}=a^{n} r^{y}
$$

where we have set $a=e^{\lambda_{1}} / e^{\lambda_{o}}$ and $r=\lambda_{o} / \lambda_{1}$. Since, $\lambda_{1}>\lambda_{o}, a>1$ and $r<1$.
The rejection region of the LRT is

$$
R: \quad \Lambda\left(x_{1}, x_{2}, \ldots, x_{n}\right) \leqslant c
$$

for some $c \in(0,1)$ determined by the significance level of the test, or

$$
\begin{equation*}
a^{n} r^{y} \leqslant c \tag{2}
\end{equation*}
$$

where $y=\sum_{i=1}^{n} x_{i}$.
Taking the natural logarithm on both sides of the inequality in (2), we obtain

$$
n \ln a+y \ln r \leqslant \ln c,
$$

from which we get that

$$
y \geqslant \frac{\ln c-n \ln a}{\ln r} \equiv b>0
$$

Thus, the LRT rejects H_{o} if

$$
\begin{array}{r}
Y \geqslant b, \tag{3}\\
\text { for some } b>0, \text { where } Y=\sum_{i=1}^{n} X_{i}
\end{array}
$$

(b) Show that the test found in part (a) is uniformly most powerful for testing

$$
\mathrm{H}_{o}: \lambda=\lambda_{o} \quad \text { versus } \quad \mathrm{H}_{1}: \lambda>\lambda_{o} .
$$

Solution: Fix b in (3) so that $\mathrm{P}\left(Y_{o}>b\right)=\alpha$, where $Y_{o} \sim$ $\operatorname{Poisson}\left(n \lambda_{o}\right)$. Note that this value of b depends only on α and λ_{o}. Furthermore, by the result of part (a), the test that reject $\mathrm{H}_{o}: \lambda=\lambda_{o}$ versus $\mathrm{H}_{o}: \lambda=\lambda_{1}$, if

$$
Y \geqslant b
$$

is the most powerful test at level α for every $\lambda_{1}>\lambda_{o}$. It then follows that the test that rejects H_{o} if

$$
Y \geqslant b
$$

is the uniformly most powerful test of H_{o} versus $\mathrm{H}_{1}: \lambda>\lambda_{o}$.
3. Given a random sample, $X_{1}, X_{2}, \ldots, X_{n}$, from a distribution with distribution function $f(x \mid \theta)$. We say that a statistic $T=T\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ is sufficient for θ is the joint distribution $f\left(x_{1}, x_{2}, \ldots, x_{n} \mid \theta\right)$ can be written in the form

$$
f\left(x_{1}, x_{2}, \ldots, x_{n} \mid \theta\right)=g(T, \theta) h\left(x_{1}, x_{2}, \ldots, x_{n}\right)
$$

for some functions $g: \mathbb{R}^{2} \rightarrow \mathbb{R}$ and $h: \mathbb{R}^{n} \rightarrow \mathbb{R}$.
Let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample from a $\operatorname{Poisson}(\lambda)$ distribution. Find a sufficient statistic for λ. Justify your answer based on the definition given above.

Solution: According to (1) int he solution to part (a) of Problem 2 in this assignment, the likelihood function in this case is

$$
L\left(\lambda \mid x_{1}, x_{2}, \ldots, x_{n}\right)=g(y, \lambda) h\left(x_{1}, x_{2}, \ldots, x_{n}\right)
$$

where

$$
g(y, \lambda)=\lambda^{y} e^{-n \lambda}
$$

$$
h\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\frac{1}{x_{1}!x_{2}!\cdots x_{n}!}
$$

and

$$
y=\sum_{i=1}^{n} x_{i} .
$$

It then follows that $Y=\sum_{i=1}^{n} X_{i}$ is a sufficient statistic for λ. Observe that $\bar{X}_{n}=\frac{1}{n} Y$ is also a sufficient statistic for λ.
4. Suppose that $X_{1}, X_{2}, \ldots, X_{n}$ forms a random sample from distribution with distribution function $f(x \mid \theta)$.
(a) Show that if T is a sufficient statistic for θ, then the likelihood ratio statistic for the test of

$$
\mathrm{H}_{o}: \theta=\theta_{o} \quad \text { versus } \mathrm{H}_{1}: \theta=\theta_{1}
$$

is a function of T.
Solution: In this case, the likelihood function is

$$
L\left(\theta \mid x_{1}, x_{2}, \ldots, x_{n}\right)=g(T, \theta) h\left(x_{1}, x_{2}, \ldots, x_{n}\right)
$$

for all possible values of the parameter θ. It then follows that the likelihood ratio statistic is

$$
\Lambda\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\frac{g\left(T, \theta_{o}\right)}{g\left(T, \theta_{1}\right)}
$$

which is a function of T.
(b) Explain how knowledge of the distribution of T under H_{o} may be used to choose a rejection region that yields the most powerful test at level α.

Solution: Knowing the distribution of T, assuming that the null hypothesis is true, it is possible to find a value, c_{α}, for c, such that

$$
\mathrm{P}\left(\frac{g\left(T, \theta_{o}\right)}{g\left(T, \theta_{1}\right)} \leqslant c_{\alpha}\right)=\alpha
$$

The LRT rejection region is then given by

$$
R: \quad g\left(T, \theta_{o}\right) \leqslant c_{\alpha} g\left(T, \theta_{1}\right)
$$

that is, if the value of T given by the sample falls in the region R, the null hypothesis is rejected.
5. Derive a likelihood ratio test for

$$
\mathrm{H}_{o}: \sigma^{2}=\sigma_{o}^{2} \quad \text { versus } \mathrm{H}_{1}: \sigma^{2} \neq \sigma_{o}^{2}
$$

based on a sample from a normal $\left(\mu, \sigma^{2}\right)$ distribution.
Solution: The likelihood ratio statistic is

$$
\begin{equation*}
\Lambda\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\frac{\sup _{\mu \in \mathbb{R}} L\left(\mu, \sigma_{o} \mid x_{1}, x_{2}, \ldots, x_{n}\right)}{L\left(\widehat{\mu}, \widehat{\sigma} \mid x_{1}, x_{2}, \ldots, x_{n}\right)} \tag{4}
\end{equation*}
$$

where $\widehat{\mu}$ and $\widehat{\sigma}^{2}$ are the MLEs for μ and σ^{2}, respectively; That is,

$$
\widehat{\mu}=\bar{x}=\frac{1}{n} \sum_{i=1}^{n} x_{i}
$$

and

$$
\widehat{\sigma}^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2} .
$$

When we maximize $L\left(\mu, \sigma_{o} \mid x_{1}, x_{2}, \ldots, x_{n}\right)$ over $\mu \in \mathbb{R}$ we obtain that $\mu=\bar{x}$. It then follows from (4) that

$$
\begin{equation*}
\Lambda\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\frac{L\left(\widehat{\mu}, \sigma_{o} \mid x_{1}, x_{2}, \ldots, x_{n}\right)}{L\left(\widehat{\mu}, \widehat{\sigma} \mid x_{1}, x_{2}, \ldots, x_{n}\right)} \tag{5}
\end{equation*}
$$

where

$$
L\left(\mu, \sigma \mid x_{1}, x_{2}, \ldots, x_{n}\right)=\frac{1}{(2 \pi)^{n / 2} \sigma^{n}} e^{-\sum_{i=1}^{n}\left(x_{i}-\mu\right)^{2} / 2 \sigma^{2}}
$$

for $\mu \in \mathbb{R}$ and $\sigma>0$. We then have from (5) that

$$
\begin{aligned}
\Lambda\left(x_{1}, x_{2}, \ldots, x_{n}\right) & =\left(\frac{\widehat{\sigma}}{\sigma_{o}}\right)^{n} \frac{e^{-\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2} / 2 \sigma_{o}^{2}}}{e^{-\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2} / 2 \widehat{\sigma}^{2}}} \\
& =\left(\frac{\widehat{\sigma}}{\sigma_{o}}\right)^{n} \frac{e^{-n \widehat{\sigma}^{2} / 2 \sigma_{o}^{2}}}{e^{-n / 2}} \\
& =e^{n / 2} t^{n / 2} e^{-n t / 2}
\end{aligned}
$$

where we have set $t=\frac{\widehat{\sigma}^{2}}{\sigma_{o}^{2}}$.

We then have that

$$
\Lambda\left(x_{1}, x_{2}, \ldots, x_{n}\right)=g(T)
$$

where T is the statistic

$$
\begin{equation*}
T=\frac{1}{n \sigma_{o}^{2}} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2} \tag{6}
\end{equation*}
$$

and $g(t)=e^{n / 2} t^{n / 2} e^{-n t / 2}$. Observe that $n T$ has a $\chi^{2}(n-1)$ distribution when the null hypothesis is true. Observe also that $g(t)$ has a graph like the one sketched in Figure 1. It then follows that for any

Figure 1: Sketch of graph of $g(t)$ for $n=10$ and $0 \leqslant t \leqslant 4$ $c \in(0,1)$, there exists t_{1} and t_{2} such that $0<t_{1}<1<t_{2}$ and

$$
g\left(t_{1}\right)=g\left(t_{1}\right)=c
$$

Furthermore,

$$
g(t) \leqslant c \quad \text { for } t \leqslant t_{1} \text { or } t \geqslant t_{2} .
$$

We then have that the LRT rejection region,

$$
R: \quad \Lambda\left(x, x_{2}, \ldots, x_{n}\right) \leqslant c,
$$

can be expressed in terms of the statistic T in (6) as

$$
R: \quad T \leqslant t_{1} \text { or } T \geqslant t_{2} .
$$

The LRT rejection region can also be expressed in terms of the sample variance, S_{n}^{2}, as follows

$$
R: \quad S_{n}^{2} \leqslant \frac{n-1}{n} t_{1} \sigma_{o}^{2} \text { or } S_{n}^{2} \geqslant \frac{n-1}{n} t_{2} \sigma_{o}^{2},
$$

for $0<t_{1}<1<t_{2}$, or, equivalently,

$$
R: \quad S_{n}^{2} \leqslant \sigma_{o}^{2}-b_{1} \text { or } S_{n}^{2} \geqslant \sigma_{o}^{2}+b_{2},
$$

for some positive values of b_{1} and b_{2} determined by the significance level of the test.

