Solutions to Assignment #13

1. Consider a test of the simple hypotheses

$$H_o: \theta = \theta_o$$
 versus $H_1: \theta = \theta_1$

based on a random sample from a distribution with pmf $f(x \mid \theta)$, for x = 1, 2, ..., 7. The values of the likelihood function at θ_o and θ_1 are given in the table below.

			3				
$L(\theta_o)$	0.01	0.01	0.01	0.01	0.01	0.01	0.94
$L(\theta_1)$	0.06	0.05	0.04	0.03	0.02	0.01	0.79

Use the Neyman–Pearson Lemma to find the most powerful test for H_o versus H_1 with significance level $\alpha = 0.04$. Compute the probability of Type II error for this test.

Solution: Table 1 shows the values of the likelihood ratio statistic in the third row. Observe that if we let c = 1/3 and R the region defined by $\Lambda \leq c$, then

$$\alpha = \mathcal{P}(\Lambda \leqslant 1/3 \mid \theta = \theta_o) = 0.04.$$

Thus, by the Neyman–Pearson Lemma, the test that rejects H_o if

x	1	2	3	4	5	6	7
$L(\theta_o)$	0.01	0.01	0.01	0.01	0.01	0.01	0.94
$L(\theta_1)$	0.06	0.05	0.04	0.03	0.02	0.01	0.79
$L(\theta_o)/L(\theta_1)$	1/6	1/5	1/4	1/3	1/2	1	1.19

Table 1: Likelihood ratios

$$\frac{L(\theta_o)}{L(\theta_1)} \leqslant \frac{1}{3}$$

is the most powerful test at significance level $\alpha = 0.04$. The power of the test is

$$\gamma(\theta_1) = P(\Lambda \leq 1/3 \mid \theta = \theta_1) = 0.18.$$

Thus, the probability of a Type II error is $1 - \gamma(\theta_1) = 82\%$.

- 2. Let X_1, X_2, \ldots, X_n be a random sample from a Poisson(λ) distribution.
 - (a) Find the most powerful test for testing

$$H_o: \lambda = \lambda_o$$
 versus $H_1: \lambda = \lambda_1$,

for $\lambda_1 > \lambda_o$.

Solution: According to the Neyman–Pearson Lemma, the most powerful test is the LRT. To find the LRT rejection region, we first compute the likelihood ratio statistic

$$\Lambda(x_1, x_2, \dots, x_n) = \frac{L(\lambda_o \mid x_1, x_2, \dots, x_n)}{L(\lambda_1 \mid x_1, x_2, \dots, x_n)},$$

where

$$L(\lambda \mid x_1, x_2, \dots, x_n) = \frac{\lambda^y}{x_1! x_2! \cdots x_n!} e^{-n\lambda}, \qquad (1)$$

for $y = \sum_{i=1}^{n} x_i$.

We then have that

$$\Lambda(x_1, x_2, \dots, x_n) = \frac{\lambda_o^y e^{-n\lambda_o}}{\lambda_1^y e^{-n\lambda_1}} = \frac{e^{n\lambda_1}}{e^{n\lambda_o}} \left(\frac{\lambda_o}{\lambda_1}\right)^y = a^n r^y$$

where we have set $a = e^{\lambda_1}/e^{\lambda_o}$ and $r = \lambda_o/\lambda_1$. Since, $\lambda_1 > \lambda_o$, a > 1 and r < 1. The rejection region of the LRT is

$$R: \quad \Lambda(x_1, x_2, \dots, x_n) \leqslant c,$$

for some $c \in (0, 1)$ determined by the significance level of the test, or

$$a^n r^y \leqslant c, \tag{2}$$

where $y = \sum_{i=1}^{n} x_i$.

Taking the natural logarithm on both sides of the inequality in (2), we obtain

 $n\ln a + y\ln r \leqslant \ln c,$

from which we get that

$$y \geqslant \frac{\ln c - n \ln a}{\ln r} \equiv b > 0.$$

Thus, the LRT rejects H_o if

$$Y \geqslant b,\tag{3}$$

for some
$$b > 0$$
, where $Y = \sum_{i=1}^{n} X_i$.

(b) Show that the test found in part (a) is uniformly most powerful for testing

$$H_o: \lambda = \lambda_o$$
 versus $H_1: \lambda > \lambda_o$.

Solution: Fix b in (3) so that $P(Y_o > b) = \alpha$, where $Y_o \sim Poisson(n\lambda_o)$. Note that this value of b depends only on α and λ_o . Furthermore, by the result of part (a), the test that reject $H_o: \lambda = \lambda_o$ versus $H_o: \lambda = \lambda_1$, if

 $Y \ge b$,

is the most powerful test at level α for every $\lambda_1 > \lambda_o$. It then follows that the test that rejects H_o if

 $Y \ge b$,

is the uniformly most powerful test of H_o versus H_1 : $\lambda > \lambda_o$. \Box

3. Given a random sample, X_1, X_2, \ldots, X_n , from a distribution with distribution function $f(x \mid \theta)$. We say that a statistic $T = T(X_1, X_2, \ldots, X_n)$ is **sufficient** for θ is the joint distribution $f(x_1, x_2, \ldots, x_n \mid \theta)$ can be written in the form

$$f(x_1, x_2, \dots, x_n \mid \theta) = g(T, \theta)h(x_1, x_2, \dots, x_n),$$

for some functions $g: \mathbb{R}^2 \to \mathbb{R}$ and $h: \mathbb{R}^n \to \mathbb{R}$.

Let X_1, X_2, \ldots, X_n be a random sample from a Poisson (λ) distribution. Find a sufficient statistic for λ . Justify your answer based on the definition given above.

Solution: According to (1) int he solution to part (a) of Problem 2 in this assignment, the likelihood function in this case is

$$L(\lambda \mid x_1, x_2, \dots, x_n) = g(y, \lambda)h(x_1, x_2, \dots, x_n),$$

where

$$g(y,\lambda) = \lambda^y \ e^{-n\lambda},$$

$$h(x_1, x_2, \dots, x_n) = \frac{1}{x_1! x_2! \cdots x_n!},$$

and

$$y = \sum_{i=1}^{n} x_i.$$

It then follows that $Y = \sum_{i=1}^{n} X_i$ is a sufficient statistic for λ . Observe that $\overline{X}_n = \frac{1}{n}Y$ is also a sufficient statistic for λ .

- 4. Suppose that X_1, X_2, \ldots, X_n forms a random sample from distribution with distribution function $f(x \mid \theta)$.
 - (a) Show that if T is a sufficient statistic for θ , then the likelihood ratio statistic for the test of

$$H_o: \theta = \theta_o$$
 versus $H_1: \theta = \theta_1$

is a function of T.

Solution: In this case, the likelihood function is

$$L(\theta \mid x_1, x_2, \dots, x_n) = g(T, \theta)h(x_1, x_2, \dots, x_n)$$

for all possible values of the parameter θ . It then follows that the likelihood ratio statistic is

$$\Lambda(x_1, x_2, \dots, x_n) = \frac{g(T, \theta_o)}{g(T, \theta_1)}$$

which is a function of T.

(b) Explain how knowledge of the distribution of T under H_o may be used to choose a rejection region that yields the most powerful test at level α .

Solution: Knowing the distribution of T, assuming that the null hypothesis is true, it is possible to find a value, c_{α} , for c, such that

$$P\left(\frac{g(T,\theta_o)}{g(T,\theta_1)} \leqslant c_\alpha\right) = \alpha.$$

The LRT rejection region is then given by

$$R: \quad g(T,\theta_o) \leqslant c_{\alpha}g(T,\theta_1);$$

that is, if the value of T given by the sample falls in the region R, the null hypothesis is rejected.

Math 152. Rumbos

5. Derive a likelihood ratio test for

$$\mathbf{H}_o: \sigma^2 = \sigma_o^2 \quad \text{versus} \quad \mathbf{H}_1: \sigma^2 \neq \sigma_o^2$$

based on a sample from a normal (μ, σ^2) distribution.

Solution: The likelihood ratio statistic is

$$\Lambda(x_1, x_2, \dots, x_n) = \frac{\sup_{\mu \in \mathbb{R}} L(\mu, \sigma_o \mid x_1, x_2, \dots, x_n)}{L(\widehat{\mu}, \widehat{\sigma} \mid x_1, x_2, \dots, x_n)},$$
(4)

where $\hat{\mu}$ and $\hat{\sigma}^2$ are the MLEs for μ and σ^2 , respectively; That is,

$$\widehat{\mu} = \overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i,$$

and

$$\widehat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \overline{x})^2.$$

When we maximize $L(\mu, \sigma_o \mid x_1, x_2, \ldots, x_n)$ over $\mu \in \mathbb{R}$ we obtain that $\mu = \overline{x}$. It then follows from (4) that

$$\Lambda(x_1, x_2, \dots, x_n) = \frac{L(\widehat{\mu}, \sigma_o \mid x_1, x_2, \dots, x_n)}{L(\widehat{\mu}, \widehat{\sigma} \mid x_1, x_2, \dots, x_n)},$$
(5)

where

$$L(\mu, \sigma \mid x_1, x_2, \dots, x_n) = \frac{1}{(2\pi)^{n/2} \sigma^n} e^{-\sum_{i=1}^n (x_i - \mu)^2 / 2\sigma^2},$$

for $\mu \in \mathbb{R}$ and $\sigma > 0$. We then have from (5) that

$$\Lambda(x_1, x_2, \dots, x_n) = \left(\frac{\widehat{\sigma}}{\sigma_o}\right)^n \frac{e^{-\sum_{i=1}^n (x_i - \overline{x})^2 / 2\sigma_o^2}}{e^{-\sum_{i=1}^n (x_i - \overline{x})^2 / 2\widehat{\sigma}^2}}$$
$$= \left(\frac{\widehat{\sigma}}{\sigma_o}\right)^n \frac{e^{-n\widehat{\sigma}^2 / 2\sigma_o^2}}{e^{-n/2}}$$
$$= e^{n/2} t^{n/2} e^{-nt/2},$$

where we have set $t = \frac{\widehat{\sigma}^2}{\sigma_o^2}$.

We then have that

$$\Lambda(x_1, x_2, \dots, x_n) = g(T)$$

where T is the statistic

$$T = \frac{1}{n\sigma_o^2} \sum_{i=1}^n (X_i - \overline{X})^2, \tag{6}$$

and $g(t) = e^{n/2} t^{n/2} e^{-nt/2}$. Observe that nT has a $\chi^2(n-1)$ distribution when the null hypothesis is true. Observe also that g(t) has a graph like the one sketched in Figure 1. It then follows that for any

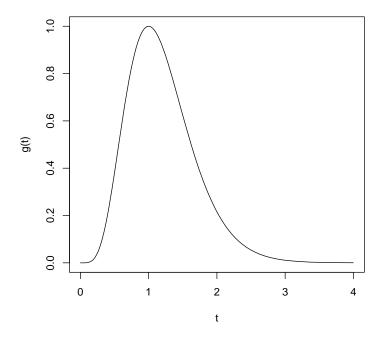


Figure 1: Sketch of graph of g(t) for n = 10 and $0 \le t \le 4$

 $c \in (0, 1)$, there exists t_1 and t_2 such that $0 < t_1 < 1 < t_2$ and

$$g(t_1) = g(t_1) = c$$

Furthermore,

$$g(t) \leq c \quad \text{for} \ t \leq t_1 \text{ or } t \geq t_2.$$

We then have that the LRT rejection region,

$$R: \quad \Lambda(x, x_2, \dots, x_n) \leqslant c,$$

can be expressed in terms of the statistic T in (6) as

$$R: \quad T \leq t_1 \text{ or } T \geq t_2.$$

The LRT rejection region can also be expressed in terms of the sample variance, $S_n^2,\,{\rm as}$ follows

$$R: \quad S_n^2 \leqslant \frac{n-1}{n} t_1 \sigma_o^2 \text{ or } S_n^2 \geqslant \frac{n-1}{n} t_2 \sigma_o^2,$$

for $0 < t_1 < 1 < t_2$, or, equivalently,

$$R: \quad S_n^2 \leqslant \sigma_o^2 - b_1 \text{ or } S_n^2 \geqslant \sigma_o^2 + b_2,$$

for some positive values of b_1 and b_2 determined by the significance level of the test.