Assignment #14

Due on Monday, November 23, 2009

Read Section 6.2 on *Rao-Cramér lower bound and efficiency*, pp. 319–330, in Hogg, Craig and McKean.

Background and Definitions

Mean Squared Error, Bias and Efficiency

Let X_1, X_2, \ldots, X_n denote a random sample from a distribution with distribution function $f(x \mid \theta)$, and let $W = W(X_1, X_2, \ldots, X_n)$ be an estimator for the parameter θ .

• Mean Squared Error. We define the mean squared error (MSE) of W to be the expected value of $(W - \theta)^2$. We denote the MSE of W by MSE(W) so that

$$MSE(W) = E_{\theta} \left[(W - \theta)^2 \right]$$

• **Bias.** The bias of the estimator W is defined to be the quantity $E_{\theta}(W) - \theta$ and is denoted by $\operatorname{bias}_{\theta}(W)$; thus,

$$\operatorname{bias}_{\theta}(W) = E_{\theta}(W) - \theta.$$

• MSE, variance and bias.

$$MSE(W) = \operatorname{var}_{\theta}(W) + [\operatorname{bias}_{\theta}(W)]^2.$$

• Efficiency. If W and \widetilde{W} are two unbiased estimators for θ the efficiency of \widetilde{W} relative to W, denoted by $\operatorname{eff}(\widetilde{W}, W)$, is defined to be

$$\operatorname{eff}_{\theta}(\widetilde{W}, W) = \frac{\operatorname{var}_{\theta}(\widetilde{W})}{\operatorname{var}_{\theta}(W)}.$$

Do the following problems

1. Let X_1, X_2, \ldots, X_n denote a random sample from a Bernoulli(*p*) distribution with $0 . We have seen that <math>\hat{p} = \frac{1}{n} \sum_{i=1}^{n} X_i$ is the MLE for *p*. Compute the mean squared error, $\text{MSE}(\hat{p})$, of \hat{p} .

Math 152. Rumbos

- 2. Let X_1, X_2, \ldots, X_n denote a random sample from a distribution with mean μ and variance σ^2 .
 - (a) For non-negative constants a_1, a_2, \ldots, a_n , define

$$W = \sum_{i=1}^{n} a_i X_i. \tag{1}$$

Prove that W is an unbiased estimator for μ if and only if $\sum_{i=1}^{n} a_i = 1$.

- (b) Out of all the unbiased estimators of μ of the form in (1), find the one which has the smallest possible variance. Calculate the variance of that estimator.
- 3. Let X₁, X₂,..., X_n denote a random sample from a normal distribution with mean μ and variance σ².
 Compute the efficiency, eff(σ², S_n²), of σ², the MLE for σ², relative to the sample variance, S_n². What do you conclude?
- 4. Let X_1, X_2, \ldots, X_n denote a random sample from a Poisson distribution with parameter λ .
 - (a) Show that the sample mean, \overline{X}_n , and the sample variance, S_n^2 , are unbiased estimators of λ .
 - (b) Compute the efficiency, $eff(\overline{X}_n, S_n^2)$, of \overline{X}_n relative to S_n^2 . What do you conclude?
- 5. Let X_1, X_2, \ldots, X_n denote a random sample from a uniform distribution over the interval $[0, \theta]$ for some parameter $\theta > 0$.

We saw in Problem 4 of Assignment #12 that $W = \max\{X_1, X_2, \ldots, X_n\}$ is the MLE for θ . Determined whether W is unbiased or not.