Solutions to Assignment \#14

1. Let $X_{1}, X_{2}, \ldots, X_{n}$ denote a random sample from a $\operatorname{Bernoulli}(p)$ distribution with $0<p<1$. We have seen that $\widehat{p}=\frac{1}{n} \sum_{i=1}^{n} X_{i}$ is the MLE for p. Compute the mean squared error, $\operatorname{MSE}(\widehat{p})$, of \widehat{p}.

Solution: Observe that \widehat{p} is an unbiased estimator for p. It then follows that

$$
\operatorname{MSE}(\widehat{p})=\operatorname{var}(\widehat{p})=\frac{p(1-p)}{n}
$$

2. Let $X_{1}, X_{2}, \ldots, X_{n}$ denote a random sample from a distribution with mean μ and variance σ^{2}.
(a) For non-negative constants $a_{1}, a_{2}, \ldots, a_{n}$, define

$$
\begin{equation*}
W=\sum_{i=1}^{n} a_{i} X_{i} \tag{1}
\end{equation*}
$$

Prove that W is an unbiased estimator for μ if and only if $\sum_{i=1}^{n} a_{i}=1$.
Solution: The estimator $W=\sum_{i=1}^{n} a_{i} X_{i}$ is an unbiased estimator for μ if and only if $E(W)=\mu$, if and only if,

$$
\sum_{i=1}^{n} a_{i} E\left(X_{i}\right)=\mu
$$

if and only if

$$
\sum_{i=1}^{n} a_{i} \mu=\mu
$$

if and only if

$$
\sum_{i=1}^{n} a_{i}=1
$$

which was to be shown.
(b) Out of all the unbiased estimators of μ of the form in (1), find the one which has the smallest possible variance. Calculate the variance of that estimator.

Solution: For any estimator, W, of μ, which is of the form

$$
W=\sum_{i=1}^{n} a_{i} X_{i}
$$

the variance is given by

$$
\operatorname{var}(W)=\sum_{i=1}^{n} a_{i}^{2} \operatorname{var}\left(X_{i}\right)=\sigma^{2} \sum_{i=1}^{n} a_{i}^{2}
$$

since the X_{i} s are independent. Thus, we need to minimize the function

$$
f\left(a_{1}, a_{2}, \ldots, a_{n}\right)=\sum_{i=1}^{n} a_{i}^{2}
$$

subject to the constraint

$$
g\left(a_{1}, a_{2}, \ldots, a_{n}\right)=\sum_{i=1}^{n} a_{i}=1
$$

We therefore use the method of lagrange multipliers; that is, we find λ and $a_{1}, a_{2}, \ldots, a_{n}$ such that

$$
\nabla f\left(a_{1}, a_{2}, \ldots, a_{n}\right)=\lambda \nabla g\left(a_{1}, a_{2}, \ldots, a_{n}\right)
$$

which leads to the equations

$$
2 a_{i}=\lambda \quad \text { for } i=1,2, \ldots, n,
$$

or

$$
a_{i}=\frac{\lambda}{2} \quad \text { for } i=1,2, \ldots, n
$$

Substituting these into the constraint equation,

$$
g\left(\left(a_{1}, a_{2}, \ldots, a_{n}\right)=1\right.
$$

yields

$$
n \frac{\lambda}{2}=1
$$

from which we get that

$$
a_{i}=\frac{1}{n} \quad \text { for } i=1,2, \ldots, n
$$

Thus, the estimator

$$
W=\sum_{i=i}^{n} \frac{1}{n} X_{i}=\bar{X}_{n}
$$

provides a critical point for the variance over all estimators of the form

$$
W=\sum_{i=1}^{n} a_{i} X_{i}
$$

with $\sum_{i=1}^{n} a_{i}=1$. To see that \bar{X}_{n} yields the smallest variance out of all estimators in the simplex defined by $\sum_{i=1}^{n} a_{i}=1$, we compare $\operatorname{var}\left(\bar{X}_{n}\right)$ with the variance at the corners of the simplex; namely,

$$
\operatorname{var}\left(X_{i}\right)=\sigma^{2}, \quad \text { for } i=1,2, \ldots, n
$$

Comparing these with

$$
\operatorname{var}\left(\bar{X}_{n}\right)=\frac{\sigma^{2}}{n}
$$

we see that \bar{X}_{n} has the smallest possible variance.
3. Let $X_{1}, X_{2}, \ldots, X_{n}$ denote a random sample from a normal distribution with mean μ and variance σ^{2}.
Compute the efficiency, $\operatorname{eff}\left(\widehat{\sigma}^{2}, S_{n}^{2}\right)$, of $\widehat{\sigma}^{2}$, the MLE for σ^{2}, relative to the sample variance, S_{n}^{2}. What do you conclude?

Solution: Since $\widehat{\sigma}^{2}$ is not an unbiased estimator of σ^{2}, in this problem, it makes more sense to look at the ratio of the MSEs; that is, we consider the relative efficiency defined by

$$
\operatorname{eff}\left(\widehat{\sigma}^{2}, S_{n}^{2}\right)=\frac{\operatorname{MSE}\left(\hat{\sigma}^{2}\right)}{\operatorname{MSE}\left(S_{n}^{2}\right)},
$$

where

$$
\operatorname{MSE}\left(S_{n}^{2}\right)=\operatorname{var}\left(S_{n}^{2}\right)
$$

since S_{n}^{n} is an unbiased estimator of σ^{2}.
Using the fact that $\frac{n-1}{\sigma^{2}} S_{n}^{2}$ has a χ^{2} with $n-1$ degrees of freedom we obtain that

$$
\operatorname{var}\left(\frac{n-1}{\sigma^{2}} S_{n}^{2}\right)=2(n-1)
$$

from which we get that

$$
\operatorname{var}\left(\frac{n-1}{\sigma^{2}} S_{n}^{2}\right)=2(n-1)
$$

or

$$
\frac{(n-1)^{2}}{\sigma^{4}} \operatorname{var}\left(S_{n}^{2}\right)=2(n-1)
$$

from which we get that

$$
\operatorname{var}\left(S_{n}^{2}\right)=\frac{2 \sigma^{4}}{n-1}
$$

We therefore have that

$$
\operatorname{MSE}\left(S_{n}^{2}\right)=\frac{2 \sigma^{4}}{n-1}
$$

Next, we compute the MSE of $\widehat{\sigma}^{2}$.
Observe first that $\widehat{\sigma}^{2}=\frac{n-1}{n} S_{n}^{2}$, so that

$$
E\left(\widehat{\sigma}^{2}\right)=\frac{n-1}{n} E\left(S_{n}^{2}\right)=\frac{n-1}{n} \sigma^{2} .
$$

Thus $\widehat{\sigma}^{2}$ is biased with

$$
\operatorname{bias}\left(\widehat{\sigma}^{2}\right)=E\left(\widehat{\sigma}^{2}\right)-\sigma^{2}=-\frac{\sigma^{2}}{n}
$$

Next, we compute the variance of $\widehat{\sigma}^{2}$:

$$
\begin{aligned}
\operatorname{var}\left(\widehat{\sigma}^{2}\right) & =\operatorname{var}\left(\frac{n-1}{n} S_{n}^{2}\right) \\
& =\frac{(n-1)^{2}}{n^{2}} \operatorname{var}\left(S_{n}^{2}\right) \\
& =\frac{(n-1)^{2}}{n^{2}} \cdot \frac{2 \sigma^{4}}{n-1} \\
& =\frac{2(n-1)}{n^{2}} \cdot \sigma^{4}
\end{aligned}
$$

Thus,

$$
\begin{aligned}
\operatorname{MSE}\left(\widehat{\sigma}^{2}\right) & =\operatorname{var}\left(\hat{\sigma}^{2}\right)+\left(\operatorname{bias}\left(\widehat{\sigma}^{2}\right)\right)^{2} \\
& =\frac{2(n-1)}{n^{2}} \sigma^{4}+\frac{1}{n^{2}} \sigma^{2} \\
& =\frac{2 n-1}{n^{2}} \sigma^{4} .
\end{aligned}
$$

Thus,

$$
\begin{aligned}
\operatorname{eff}\left(\widehat{\sigma}^{2}, S_{n}^{2}\right) & =\frac{\operatorname{MSE}\left(\widehat{\sigma}^{2}\right)}{\operatorname{MSE}\left(S_{n}^{2}\right)} \\
& =\frac{\frac{2 n-1}{n^{2}} \sigma^{4}}{\frac{2}{n-1} \sigma^{4}} \\
& =\frac{(2 n-1)(n-1)}{2 n^{2}} \\
& =1-\frac{1}{2 n}\left(3-\frac{1}{n}\right) .
\end{aligned}
$$

Hence,

$$
\frac{\operatorname{MSE}\left(\widehat{\sigma}^{2}\right)}{\operatorname{MSE}\left(S_{n}^{2}\right)}<1, \quad \text { for all } n
$$

which shows that the MLE $\widehat{\sigma}^{2}$ has a smaller mean square error that the unbiased estimator S_{n}^{2}.
4. Let $X_{1}, X_{2}, \ldots, X_{n}$ denote a random sample from a Poisson distribution with parameter λ.
(a) Show that the sample mean, \bar{X}_{n}, and the sample variance, S_{n}^{2}, are unbiased estimators of λ.

Solution: The mean and variance of a Poisson distribution with parameter λ are both equal to λ. It then follows that the sample mean, \bar{X}_{n}, and the sample variance, S_{n}^{2}, are both unbiased estimators of λ.
(b) Compute the efficiency, $\operatorname{eff}\left(\bar{X}_{n}, S_{n}^{2}\right)$, of \bar{X}_{n} relative to S_{n}^{2}. What do you conclude?

Solution: We need to compute the variance of S_{n}^{2}. In order to do this we apply the formula

$$
\begin{equation*}
\operatorname{var}\left(S_{n}^{2}\right)=\frac{1}{n}\left(\mu_{4}-\frac{n-3}{n-1} \mu_{2}^{2}\right), \tag{2}
\end{equation*}
$$

where μ_{2} denotes the second central moment, or variance, of the distribution and μ_{4} is the fourth central moment. We therefore have from (2) that

$$
\begin{equation*}
\operatorname{var}\left(S_{n}^{2}\right)=\frac{1}{n}\left(E\left[(X-\lambda)^{4}\right]-\frac{n-3}{n-1} \lambda^{2}\right) \tag{3}
\end{equation*}
$$

where $X \sim \operatorname{Poisson}(\lambda)$. Next, compute

$$
\begin{aligned}
E\left[(X-\lambda)^{4}\right] & =E\left[X^{4}-4 \lambda X^{3}+6 \lambda^{2} X^{2}-4 \lambda^{3} X+\lambda^{4}\right] \\
& =E\left(X^{4}\right)-4 \lambda E\left(X^{3}\right)+6 \lambda^{2} E\left(X^{2}\right)-4 \lambda^{3} E(X)+\lambda^{4}
\end{aligned}
$$

where we have used the linearity of the expectation operator. Thus,

$$
\begin{equation*}
E\left[(X-\lambda)^{4}\right]=E\left(X^{4}\right)-4 \lambda E\left(X^{3}\right)+6 \lambda^{2} E\left(X^{2}\right)-3 \lambda^{4} \tag{4}
\end{equation*}
$$

Next, compute the moments $E\left(X^{2}\right), E\left(X^{3}\right)$ and $E\left(X^{4}\right)$ by using the moment generating function

$$
M_{X}(t)=e^{\lambda\left(e^{t}-1\right)}, \quad \text { for all } t \in \mathbb{R}
$$

Taking the first four derivatives we obtain

$$
\begin{aligned}
M_{x}^{\prime}(t) & =\lambda e^{t} e^{\lambda\left(e^{t}-1\right)} \\
M_{x}^{\prime \prime}(t) & =\left(\lambda^{2} e^{2 t}+\lambda e^{t}\right) e^{\lambda\left(e^{t}-1\right)}
\end{aligned}
$$

$$
M_{X}^{\prime \prime \prime}(t)=\left(\lambda^{3} e^{3 t}+3 \lambda^{2} e^{2 t}+\lambda e^{t}\right) e^{\lambda\left(e^{t}-1\right)}
$$

and

$$
M_{X}^{(4)}(t)=\left(\lambda^{4} e^{4 t}+6 \lambda^{3} e^{3 t}+7 \lambda^{2} e^{2 t}+\lambda e^{t}\right) e^{\lambda\left(e^{t}-1\right)} .
$$

It then follows that the moments of X are

$$
\begin{aligned}
& E\left(X^{2}\right)=M_{X}^{\prime \prime}(0)=\lambda^{2}+\lambda, \\
& E\left(X^{3}\right)=M_{X}^{\prime \prime \prime}(0)=\lambda^{3}+3 \lambda^{2}+\lambda, \\
& E\left(X^{4}\right)=M_{X}^{(4)}(0)=\lambda^{4}+6 \lambda^{3}+7 \lambda^{2}+\lambda .
\end{aligned}
$$

Thus, using equation (4), we obtain that

$$
E\left[(X-\lambda)^{4}\right]=3 \lambda^{2}+\lambda
$$

We therefore get from (3) that

$$
\begin{aligned}
\operatorname{var}\left(S_{n}^{2}\right) & =\frac{1}{n}\left(3 \lambda^{2}+\lambda-\frac{n-3}{n-1} \lambda^{2}\right) \\
& =\frac{1}{n}\left(\frac{2 n}{n-1} \lambda^{2}+\lambda\right)
\end{aligned}
$$

The variance of \bar{X}_{n} is

$$
\operatorname{var}\left(\bar{X}_{n}\right)=\frac{\lambda}{n} .
$$

We then have that

$$
\operatorname{eff}\left(\bar{X}_{n}, S_{n}^{2}\right)=\frac{\operatorname{var}\left(\bar{X}_{n}\right)}{\operatorname{var}\left(S_{n}^{2}\right)}=\frac{n-1}{n-1+2 n \lambda}<1
$$

for all n. Consequently, \bar{X}_{n} is a more precise estimator of λ than the sample variance.
5. Let $X_{1}, X_{2}, \ldots, X_{n}$ denote a random sample from a uniform distribution over the interval $[0, \theta]$ for some parameter $\theta>0$.
We saw in Problem 4 of Assignment $\# 12$ that $W=\max \left\{X_{1}, X_{2}, \ldots, X_{n}\right\}$ is the MLE for θ. Determined whether W is unbiased or not.

Solution: We need to compute the expected value of W :

$$
\begin{equation*}
E_{\theta}(W)=\int_{-\infty}^{\infty} w f_{W}(w \mid \theta) \mathrm{d} w \tag{5}
\end{equation*}
$$

where $f_{W}(w \mid \theta)$ is the pdf of W. To determine the pdf of W, we first compute the cdf

$$
\begin{aligned}
F_{W}(w \mid \theta) & =\mathrm{P}(W \leqslant w) \\
& =\mathrm{P}\left(\max \left\{X_{1}, X_{2}, \ldots, X_{n}\right\} \leqslant w\right) \\
& =\mathrm{P}\left(X_{1} \leqslant w, X_{2} \leqslant w, \ldots, X_{n} \leqslant w\right) \\
& =\mathrm{P}\left(X_{1} \leqslant w\right) \cdot \mathrm{P}\left(X_{2} \leqslant w\right) \cdots \mathrm{P}\left(X_{n} \leqslant w\right)
\end{aligned}
$$

where we have used the independence of the $X_{i} \mathrm{~s}$. Consequently, since the $X_{i} \mathrm{~s}$ are also identically distributed,

$$
F_{W}(w \mid \theta)=\left[F_{X}(w)\right]^{n} .
$$

it then follows that

$$
\begin{equation*}
f_{W}(w \mid \theta)=n\left[F_{X}(w)\right]^{n-1} f_{X}(w \mid \theta), \tag{6}
\end{equation*}
$$

where $f_{X}(w \mid \theta)$ is the pdf of $X \sim$ uniform $[0, \theta]$; namely,

$$
f_{X}(w \mid \theta)= \begin{cases}\frac{1}{\theta} & \text { if } 0 \leqslant w \leqslant \theta \\ 0 & \text { otherwise }\end{cases}
$$

so that

$$
F_{X}(w \mid \theta)= \begin{cases}0 & \text { if } w \leqslant 0 \\ \frac{w}{\theta} & \text { if } 0<w \leqslant \theta \\ 1 & \text { if } w>\theta\end{cases}
$$

Consequently, by equation (6),

$$
f_{W}(w \mid \theta)= \begin{cases}\frac{n w^{n-1}}{\theta^{n}} & \text { if } 0 \leqslant w \leqslant \theta \\ 0 & \text { otherwise }\end{cases}
$$

It then follows from 5)that

$$
E_{\theta}(W)=\int_{0}^{\theta} \frac{n w^{n}}{\theta^{n}} \mathrm{~d} \theta=\frac{n}{n+1} \theta
$$

We then see that $E_{\theta}(W) \neq \theta$, which shows that W is not an unbiased estimator of θ.

