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Solutions to Assignment #14

1. Let X1, X2, . . . , Xn denote a random sample from a Bernoulli(p) distribution

with 0 < p < 1. We have seen that p̂ =
1

n

n∑
i=1

Xi is the MLE for p. Compute

the mean squared error, MSE(p̂), of p̂.

Solution: Observe that p̂ is an unbiased estimator for p. It then
follows that

MSE(p̂) = var(p̂) =
p(1− p)

n
.

□

2. Let X1, X2, . . . , Xn denote a random sample from a distribution with mean �
and variance �2.

(a) For non–negative constants a1, a2, . . . , an, define

W =
n∑
i=1

aiXi. (1)

Prove that W is an unbiased estimator for � if and only if
n∑
i=1

ai = 1.

Solution: The estimator W =
n∑
i=1

aiXi is an unbiased estimator

for � if and only if E(W ) = �, if and only if,

n∑
i=1

aiE(Xi) = �,

if and only if
n∑
i=1

ai� = �,

if and only if
n∑
i=1

ai = 1,

which was to be shown. □
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(b) Out of all the unbiased estimators of � of the form in (1), find the one
which has the smallest possible variance. Calculate the variance of that
estimator.

Solution: For any estimator, W , of �, which is of the form

W =
n∑
i=1

aiXi,

the variance is given by

var(W ) =
n∑
i=1

a2ivar(Xi) = �2

n∑
i=1

a2i ,

since the Xis are independent. Thus, we need to minimize the
function

f(a1, a2, . . . , an) =
n∑
i=1

a2i

subject to the constraint

g(a1, a2, . . . , an) =
n∑
i=1

ai = 1.

We therefore use the method of lagrange multipliers; that is, we
find � and a1, a2, . . . , an such that

∇f(a1, a2, . . . , an) = �∇g(a1, a2, . . . , an),

which leads to the equations

2ai = � for i = 1, 2, . . . , n,

or

ai =
�

2
for i = 1, 2, . . . , n.

Substituting these into the constraint equation,

g((a1, a2, . . . , an) = 1,

yields

n
�

2
= 1,
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from which we get that

ai =
1

n
for i = 1, 2, . . . , n.

Thus, the estimator

W =
n∑
i=i

1

n
Xi = Xn

provides a critical point for the variance over all estimators of the
form

W =
n∑
i=1

aiXi,

with
n∑
i=1

ai = 1. To see that Xn yields the smallest variance out

of all estimators in the simplex defined by
n∑
i=1

ai = 1, we compare

var(Xn) with the variance at the corners of the simplex; namely,

var(Xi) = �2, for i = 1, 2, . . . , n.

Comparing these with

var(Xn) =
�2

n
,

we see that Xn has the smallest possible variance. □

3. Let X1, X2, . . . , Xn denote a random sample from a normal distribution with
mean � and variance �2.

Compute the efficiency, eff(�̂2, S2
n), of �̂2, the MLE for �2, relative to the sample

variance, S2
n. What do you conclude?

Solution: Since �̂2 is not an unbiased estimator of �2, in this prob-
lem, it makes more sense to look at the ratio of the MSEs; that is, we
consider the relative efficiency defined by

eff(�̂2, S2
n) =

MSE(�̂2)

MSE(S2
n)
,
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where
MSE(S2

n) = var(S2
n)

since Snn is an unbiased estimator of �2.

Using the fact that
n− 1

�2
S2
n has a �2 with n− 1 degrees of freedom

we obtain that

var

(
n− 1

�2
S2
n

)
= 2(n− 1),

from which we get that

var

(
n− 1

�2
S2
n

)
= 2(n− 1),

or
(n− 1)2

�4
var
(
S2
n

)
= 2(n− 1),

from which we get that

var
(
S2
n

)
=

2�4

n− 1
.

We therefore have that

MSE
(
S2
n

)
=

2�4

n− 1
.

Next, we compute the MSE of �̂2.

Observe first that �̂2 =
n− 1

n
S2
n, so that

E(�̂2) =
n− 1

n
E(S2

n) =
n− 1

n
�2.

Thus �̂2 is biased with

bias(�̂2) = E(�̂2)− �2 = −�
2

n
.
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Next, we compute the variance of �̂2:

var(�̂2) = var

(
n− 1

n
S2
n

)

=
(n− 1)2

n2
var
(
S2
n

)
=

(n− 1)2

n2
⋅ 2�4

n− 1

=
2(n− 1)

n2
⋅ �4.

Thus,

MSE(�̂2) = var(�̂2) +
(
bias(�̂2)

)2
=

2(n− 1)

n2
�4 +

1

n2
�2

=
2n− 1

n2
�4.

Thus,

eff(�̂2, S2
n) =

MSE(�̂2)

MSE(S2
n)

=

2n− 1

n2
�4

2

n− 1
�4

=
(2n− 1)(n− 1)

2n2

= 1− 1

2n

(
3− 1

n

)
.

Hence,
MSE(�̂2)

MSE(S2
n)
< 1, for all n,

which shows that the MLE �̂2 has a smaller mean square error that
the unbiased estimator S2

n. □
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4. Let X1, X2, . . . , Xn denote a random sample from a Poisson distribution with
parameter �.

(a) Show that the sample mean, Xn, and the sample variance, S2
n, are unbiased

estimators of �.

Solution: The mean and variance of a Poisson distribution with
parameter � are both equal to �. It then follows that the sam-
ple mean, Xn, and the sample variance, S2

n, are both unbiased
estimators of �. □

(b) Compute the efficiency, eff(Xn, S
2
n), of Xn relative to S2

n. What do you
conclude?

Solution: We need to compute the variance of S2
n. In order to

do this we apply the formula

var(S2
n) =

1

n

(
�4 −

n− 3

n− 1
�2
2

)
, (2)

where �2 denotes the second central moment, or variance, of the
distribution and �4 is the fourth central moment. We therefore
have from (2) that

var(S2
n) =

1

n

(
E
[
(X − �)4

]
− n− 3

n− 1
�2
)
, (3)

where X ∼ Poisson(�). Next, compute

E [(X − �)4] = E [X4 − 4�X3 + 6�2X2 − 4�3X + �4]

= E(X4)− 4�E(X3) + 6�2E(X2)− 4�3E(X) + �4,

where we have used the linearity of the expectation operator.
Thus,

E [(X − �)4] = E(X4)− 4�E(X3) + 6�2E(X2)− 3�4. (4)

Next, compute the moments E(X2), E(X3) and E(X4) by using
the moment generating function

M
X

(t) = e�(e
t−1), for all t ∈ ℝ.

Taking the first four derivatives we obtain

M ′
X

(t) = �et e�(e
t−1),

M ′′
X

(t) = (�2e2t + �et) e�(e
t−1),
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M ′′′
X

(t) = (�3e3t + 3�2e2t + �et) e�(e
t−1),

and

M (4)
X

(t) = (�4e4t + 6�3e3t + 7�2e2t + �et) e�(e
t−1).

It then follows that the moments of X are

E(X2) = M ′′
X

(0) = �2 + �,

E(X3) = M ′′′
X

(0) = �3 + 3�2 + �,

E(X4) = M (4)
X

(0) = �4 + 6�3 + 7�2 + �.

Thus, using equation (4), we obtain that

E
[
(X − �)4

]
= 3�2 + �.

We therefore get from (3) that

var(S2
n) =

1

n

(
3�2 + �− n− 3

n− 1
�2
)

=
1

n

(
2n

n− 1
�2 + �

)
The variance of Xn is

var(Xn) =
�

n
.

We then have that

eff(Xn, S
2
n) =

var(Xn)

var(S2
n)

=
n− 1

n− 1 + 2n�
< 1

for all n. Consequently, Xn is a more precise estimator of � than
the sample variance. □

5. Let X1, X2, . . . , Xn denote a random sample from a uniform distribution over
the interval [0, �] for some parameter � > 0.

We saw in Problem 4 of Assignment #12 that W = max{X1, X2, . . . , Xn} is
the MLE for �. Determined whether W is unbiased or not.
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Solution: We need to compute the expected value of W :

E
�
(W ) =

∫ ∞
−∞

wf
W

(w ∣ �) dw, (5)

where f
W

(w ∣ �) is the pdf of W . To determine the pdf of W , we first
compute the cdf

F
W

(w ∣ �) = P(W ⩽ w)

= P(max{X1, X2, . . . , Xn} ⩽ w)

= P(X1 ⩽ w,X2 ⩽ w, . . . , Xn ⩽ w)

= P(X1 ⩽ w) ⋅ P(X2 ⩽ w) ⋅ ⋅ ⋅P(Xn ⩽ w),

where we have used the independence of the Xis. Consequently, since
the Xis are also identically distributed,

F
W

(w ∣ �) = [F
X

(w)]n.

it then follows that

f
W

(w ∣ �) = n[F
X

(w)]n−1f
X

(w ∣ �), (6)

where f
X

(w ∣ �) is the pdf of X ∼ uniform[0, �]; namely,

f
X

(w ∣ �) =

⎧⎨⎩
1

�
if 0 ⩽ w ⩽ �;

0 otherwise,

so that

F
X

(w ∣ �) =

⎧⎨⎩

0 if w ⩽ 0;

w

�
if 0 < w ⩽ �;

1 if w > �.

Consequently, by equation (6),

f
W

(w ∣ �) =

⎧⎨⎩
nwn−1

�n
if 0 ⩽ w ⩽ �;

0 otherwise,
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It then follows from 5)that

E
�
(W ) =

∫ �

0

nwn

�n
d� =

n

n+ 1
�.

We then see that E
�
(W ) ∕= �, which shows that W is not an unbiased

estimator of �. □


