Assignment #15

Due on Monday, November 30, 2009

Read Section 6.2 on *Rao-Cramér lower bound and efficiency*, pp. 319–330, in Hogg, Craig and McKean.

Background and Definitions

Crámer–Rao Information Inequality and Efficiency

Let X_1, X_2, \ldots, X_n denote a random sample from a distribution with distribution function $f(x \mid \theta)$, and let $W = W(X_1, X_2, \ldots, X_n)$ be an estimator for the parameter θ .

• Information Inequality. Put $g(\theta) = E_{\theta}(W)$. Then,

$$\operatorname{var}(W) \geqslant \frac{[g'(\theta)]^2}{nI(\theta)},\tag{1}$$

where

$$I(\theta) = \operatorname{var}\left(\frac{\partial}{\partial \theta} \left[\ln\left(f(X \mid \theta)\right)\right]\right)$$

is the **Fisher information**. If W is unbiased, we obtain from (1) that

$$\operatorname{var}(W) \ge \frac{1}{nI(\theta)}.$$
(2)

• Efficient Estimator. Let W be and unbiased estimators for θ . W is said to be efficient if var(W) is the lower bound in the Crámer-Rao inequality in (2); that is,

$$\operatorname{var}(W) = \frac{1}{nI(\theta)}$$

Do the following problems

1. Suppose that when the radius of a disc in the plane is measured, an error is made that has a normal $(0, \sigma^2)$ distribution. If *n* independent measurements are made, find an unbiased estimator for the area of the disc. Is this the best unbiased estimator for the area? Assume that σ^2 is known.

- 2. Let X_1, X_2, \ldots, X_n be iid Bernoulli(p) random variables. Show that the MLE for p is an efficient estimator.
- 3. Let X_1, X_2, \ldots, X_n be iid exponential(β) random variables, and define

$$Y = \min\{X_1, X_2, \dots, X_n\}.$$

Find an unbiased estimator, W, based only on Y. Compute var(W) and compare it to the variance of the sample mean, \overline{X}_n . Which of W or \overline{X}_n is a more efficient estimator.

- 4. Let X_1, X_2, \ldots, X_n be a random sample from a normal (μ, σ^2) distribution. Prove that the sample mean, \overline{X}_n , is an efficient estimator of μ for every known $\sigma^2 > 0$.
- 5. Let X_1, X_2, \ldots, X_n denote a random sample from a uniform distribution over the interval $[0, \theta]$ for some parameter $\theta > 0$.

Let $Y = \max\{X_1, X_2, \dots, X_n\}$ and define $W = \frac{n+1}{n}Y$. Compute the variance W. Is W an efficient estimator of θ ?