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Solutions to Assignment #1

1. Let 0 < p < 1. A random variable X is said to follow a Bernoulli(p) distribution
if X takes the values 0 and 1, p

X
(0) = 1− p and p

X
(1) = p.

Let X1, X2, . . . , Xn denote a random sample from a Bernoulli(p) distribution
and define the statistic Y = X1 +X2 + ⋅ ⋅ ⋅+Xn.

(a) Compute the mgf of Y and use it to determine the sampling distribution
of Y .

Solution: Since the random variables X1, X2, . . . , Xn are inde-
pendent, it follows that

M
Y

(t) = M
X1+X2+⋅⋅⋅+Xn

(t)

= M
X1

(t) ⋅M
X2

(t) ⋅ ⋅ ⋅M
Xn

(t)

=
[
M

X1
(t)
]n
,

where we have used the assumption that X1, X2, . . . , Xn have the
same distribution. It then follows that

M
Y

(t) = (1− p+ p et)n,

which is the mgf of a binomial(n, p) random variable. Conse-
quently,

Y ∼ binomial(n, p).

□

(b) Show that Y/n is an unbiased estimator of p.

Solution: Since Y ∼ binomial(n, p), it follows that E(Y ) = np.
Consequently,

E

(
Y

n

)
=

1

n
E(Y ) = p,

which shows that Y/n is an unbiased estimator of p. □

2. A random variable, X, is said to follow an exponential distribution with param-
eter �, where � > 0, if X has the pdf

f
X

(x) =

⎧⎨⎩
1

�
e−x/� if x > 0;

0 if x ⩽ 0.
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We write X ∼ exponential(�).

(a) Let � > 0 and X ∼ exponential(�). Verify that the mgf of X is

M
X

(t) =
1

1− �t
for t <

1

�
.

Solution: Compute

M
X

(t) =

∫ ∞
−∞

etxf
X

(x) dx

=

∫ ∞
0

etx
1

�
e−x/� dx

=

∫ ∞
0

1

�
e−(1−�t)x/� dx.

The last integral converges if and only if 1− �t > 0, or t <
1

�
, to

M
X

(t) =
1

1− �t
.

□

(b) Let � > 0 and X1, X2, . . . , Xn be a random sample from an exponential(�)
distribution. Compute the mgf of the sample mean, Xn.

Solution: Compute

M
Xn

(t) = E(etXn)

= E
(
e(X1+X2+⋅⋅⋅+Xn) tn

)
= M

X1+X2+⋅⋅⋅+Xn

(
t

n

)

=

[
M

X1

(
t

n

)]n
,

where we have used the assumption that X1, X2, . . . , Xn be a ran-
dom sample. Hence, by the previous part,

M
Xn

(t) =

[
1

1− �t/n

]n
for t <

n

�
.

□
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(c) Let Yn = 2nXn/�. Compute the mgf of Yn.

Solution: Compute

M
Yn

(t) = E(etYn)

= E
(
eXn( 2nt

� )
)

= M
Xn

(
2nt

�

)

=

[
1

1− �(2nt/�)/n

]n

=

[
1

1− 2t

]n
for t <

1

2
. □

3. Let Γ: (0,∞)→ ℝ be given by

Γ(x) =

∫ ∞
0

tx−1e−t dt for all x > 0. (1)

Derive the following identities:

(a) Γ(1) = 1.

Solution: Compute

Γ(1) =

∫ ∞
0

t1−1e−t dt

=

∫ ∞
0

e−t dt

= lim
b→∞

∫ b

0

e−t dt

= lim
b→∞

(1− e−b)

= 1.

□
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(b) Γ(x+ 1) = xΓ(x) for all x > 0.

Solution: Compute

Γ(x+ 1) =

∫ ∞
0

txe−t dt

= lim
b→∞

∫ b

0

txe−t dt,

where ∫ b

0

txe−t dt =
[
−txe−t

]b
0

+

∫ b

0

xtx−1e−t dt,

by virtue of integration by parts, or∫ b

0

txe−t dt = −bxe−b + x

∫ b

0

tx−1e−t dt.

It then follows that

lim
b→∞

∫ b

0

txe−t dt = x

∫ ∞
0

tx−1e−t dt,

since
lim
b→∞

bxe−b = 0

for all x ∈ ℝ. Consequently,

Γ(x+ 1) = x

∫ ∞
0

tx−1e−t dt = xΓ(x).

□

(c) Γ(n+ 1) = n! for all positive integers n.

Proof: We prove the result by induction on n.

First observe that Γ(1 + 1) = (1)Γ(1) = 1 by the result of part (a). Thus,
Γ(1 + 1) = 1! and the result is true for n = 1.

Next, assume that Γ(n+ 1) = n! and we prove that Γ(n+ 2) = (n+ 1)!.

Compute
Γ(n+ 2) = Γ[(n+ 1) + 1]

= (n+ 1)Γ(n+ 1)

= (n+ 1)n!

= (n+ 1)!,
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which was to be shown.

4. Let Γ: (0,∞)→ ℝ be as defined in (1).

(a) Compute Γ(1/2).

Hint: The change of variable t = z2/2 might come in handy. Recall that
if Z ∼ normal(0, 1), then its pdf is given by

f
Z
(z) =

e−z
2/2

√
2�

for all z ∈ ℝ.

Solution: Compute

Γ(1/2) =

∫ ∞
0

t(1/2)−1e−t dt

=

∫ ∞
0

1√
t
e−t dt.

Make the change of variable t = z2/2 to get dt = z dz and√
t = z/

√
2. It then follows that

Γ(1/2) =

∫ ∞
0

√
2

z
e−z

2/2z dz

= 2
√
�

∫ ∞
0

1√
2�

e−z
2/2 dz

=
√
�

∫ ∞
−∞

f
Z
(z) dz

=
√
�,

which was to be shown. □

(b) Compute Γ(3/2).

Solution: Use the result from part (b) of Problem 3 to get that

Γ(3/2) = Γ[(1/2) + 1] = (1/2)Γ(1/2) =
√
�/2.

□
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5. Use the results of Problems 3 and 4 to derive the identity:

Γ

(
k

2

)
=

Γ(k)
√
�

2k−1 Γ
(
k+1
2

) (2)

for every positive, odd integer k.

Proof. We proceed by induction on odd k.

For k = 1 we have, by part (a) of Problem 4 that

Γ

(
1

2

)
=
√
� =

Γ(1)
√
�

21−1 Γ
(
1+1
2

)
since Γ(1) = 1 by part (a) of Problem 3. Thus, the result is true for k = 1.

Next assume that (2) for an odd integer k; we show that the result is true for
the next odd integer k + 2.

Using part (b) of Problem 3 we get

Γ

(
k + 2

2

)
= Γ

(
k

2
+ 1

)

=
k

2
⋅ Γ
(
k

2

)
;

so that, by the inductive hypothesis (2),

Γ

(
k + 2

2

)
=

k

2
⋅ Γ(k)

√
�

2k−1 Γ
(
k+1
2

)
=

Γ(k + 1)
√
�

2k Γ
(
k+1
2

)
=

(k + 1)Γ(k + 1)
√
�

2k (k + 1)Γ
(
k+1
2

)
=

Γ(k + 2)
√
�

2k+1 k+1
2

Γ
(
k+1
2

)
=

Γ(k + 2)
√
�

2k+1 Γ
(
k+1
2

+ 1
)

=
Γ(k + 2)

√
�

2k+1 Γ
(
k+3
2

) .
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Hence

Γ

(
k + 2

2

)
=

Γ(k + 2)
√
�

2(k+2)−1 Γ
(

(k+2)+1
2

) ,
which shows that the result is true for k + 2.


