Solutions to Assignment \#1

1. Let $0<p<1$. A random variable X is said to follow a $\operatorname{Bernoulli}(p)$ distribution if X takes the values 0 and $1, p_{X}(0)=1-p$ and $p_{X}(1)=p$.
Let $X_{1}, X_{2}, \ldots, X_{n}$ denote a random sample from a $\operatorname{Bernoulli}(p)$ distribution and define the statistic $Y=X_{1}+X_{2}+\cdots+X_{n}$.
(a) Compute the mgf of Y and use it to determine the sampling distribution of Y.

Solution: Since the random variables $X_{1}, X_{2}, \ldots, X_{n}$ are independent, it follows that

$$
\begin{aligned}
M_{Y}(t) & =M_{X_{1}+X_{2}+\cdots+X_{n}}(t) \\
& =M_{X_{1}}(t) \cdot M_{X_{2}}(t) \cdots M_{X_{n}}(t) \\
& =\left[M_{X_{1}}(t)\right]^{n},
\end{aligned}
$$

where we have used the assumption that $X_{1}, X_{2}, \ldots, X_{n}$ have the same distribution. It then follows that

$$
M_{Y}(t)=\left(1-p+p e^{t}\right)^{n}
$$

which is the mgf of a $\operatorname{binomial}(n, p)$ random variable. Consequently,

$$
Y \sim \operatorname{binomial}(n, p)
$$

(b) Show that Y / n is an unbiased estimator of p.

Solution: Since $Y \sim \operatorname{binomial}(n, p)$, it follows that $E(Y)=n p$. Consequently,

$$
E\left(\frac{Y}{n}\right)=\frac{1}{n} E(Y)=p
$$

which shows that Y / n is an unbiased estimator of p.
2. A random variable, X, is said to follow an exponential distribution with parameter β, where $\beta>0$, if X has the pdf

$$
f_{X}(x)= \begin{cases}\frac{1}{\beta} e^{-x / \beta} & \text { if } x>0 \\ 0 & \text { if } x \leqslant 0\end{cases}
$$

We write $X \sim \operatorname{exponential}(\beta)$.
(a) Let $\beta>0$ and $X \sim \operatorname{exponential}(\beta)$. Verify that the mgf of X is

$$
M_{X}(t)=\frac{1}{1-\beta t} \quad \text { for } \quad t<\frac{1}{\beta}
$$

Solution: Compute

$$
\begin{aligned}
M_{X}(t) & =\int_{-\infty}^{\infty} e^{t x} f_{X}(x) \mathrm{d} x \\
& =\int_{0}^{\infty} e^{t x} \frac{1}{\beta} e^{-x / \beta} \mathrm{d} x \\
& =\int_{0}^{\infty} \frac{1}{\beta} e^{-(1-\beta t) x / \beta} \mathrm{d} x
\end{aligned}
$$

The last integral converges if and only if $1-\beta t>0$, or $t<\frac{1}{\beta}$, to

$$
M_{X}(t)=\frac{1}{1-\beta t}
$$

(b) Let $\beta>0$ and $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample from an exponential (β) distribution. Compute the mgf of the sample mean, \bar{X}_{n}.

Solution: Compute

$$
\begin{aligned}
M_{\bar{X}_{n}}(t) & =E\left(e^{t \bar{X}_{n}}\right) \\
& =E\left(e^{\left(X_{1}+X_{2}+\cdots+X_{n}\right) \frac{t}{n}}\right) \\
& =M_{X_{1}+X_{2}+\cdots+X_{n}}\left(\frac{t}{n}\right) \\
& =\left[M_{X_{1}}\left(\frac{t}{n}\right)\right]^{n}
\end{aligned}
$$

where we have used the assumption that $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample. Hence, by the previous part,

$$
M_{\bar{x}_{n}}(t)=\left[\frac{1}{1-\beta t / n}\right]^{n} \quad \text { for } \quad t<\frac{n}{\beta}
$$

(c) Let $Y_{n}=2 n \bar{X}_{n} / \beta$. Compute the mgf of Y_{n}.

Solution: Compute

$$
\begin{aligned}
M_{Y_{n}}(t) & =E\left(e^{t Y_{n}}\right) \\
& =E\left(e^{\bar{X}_{n}\left(\frac{2 n t}{\beta}\right)}\right) \\
& =M_{\bar{X}_{n}}\left(\frac{2 n t}{\beta}\right) \\
& =\left[\frac{1}{1-\beta(2 n t / \beta) / n}\right]^{n} \\
& =\left[\frac{1}{1-2 t}\right]^{n}
\end{aligned}
$$

for $t<\frac{1}{2}$.
3. Let $\Gamma:(0, \infty) \rightarrow \mathbb{R}$ be given by

$$
\begin{equation*}
\Gamma(x)=\int_{0}^{\infty} t^{x-1} e^{-t} \mathrm{~d} t \quad \text { for all } x>0 \tag{1}
\end{equation*}
$$

Derive the following identities:
(a) $\Gamma(1)=1$.

Solution: Compute

$$
\begin{aligned}
\Gamma(1) & =\int_{0}^{\infty} t^{1-1} e^{-t} \mathrm{~d} t \\
& =\int_{0}^{\infty} e^{-t} \mathrm{~d} t \\
& =\lim _{b \rightarrow \infty} \int_{0}^{b} e^{-t} \mathrm{~d} t \\
& =\lim _{b \rightarrow \infty}\left(1-e^{-b}\right) \\
& =1
\end{aligned}
$$

(b) $\Gamma(x+1)=x \Gamma(x)$ for all $x>0$.

Solution: Compute

$$
\begin{aligned}
\Gamma(x+1) & =\int_{0}^{\infty} t^{x} e^{-t} \mathrm{~d} t \\
& =\lim _{b \rightarrow \infty} \int_{0}^{b} t^{x} e^{-t} \mathrm{~d} t
\end{aligned}
$$

where

$$
\int_{0}^{b} t^{x} e^{-t} \mathrm{~d} t=\left[-t^{x} e^{-t}\right]_{0}^{b}+\int_{0}^{b} x t^{x-1} e^{-t} \mathrm{~d} t
$$

by virtue of integration by parts, or

$$
\int_{0}^{b} t^{x} e^{-t} \mathrm{~d} t=-b^{x} e^{-b}+x \int_{0}^{b} t^{x-1} e^{-t} \mathrm{~d} t
$$

It then follows that

$$
\lim _{b \rightarrow \infty} \int_{0}^{b} t^{x} e^{-t} \mathrm{~d} t=x \int_{0}^{\infty} t^{x-1} e^{-t} \mathrm{~d} t
$$

since

$$
\lim _{b \rightarrow \infty} b^{x} e^{-b}=0
$$

for all $x \in \mathbb{R}$. Consequently,

$$
\Gamma(x+1)=x \int_{0}^{\infty} t^{x-1} e^{-t} \mathrm{~d} t=x \Gamma(x)
$$

(c) $\Gamma(n+1)=n$! for all positive integers n.

Proof: We prove the result by induction on n.
First observe that $\Gamma(1+1)=(1) \Gamma(1)=1$ by the result of part (a). Thus, $\Gamma(1+1)=1$! and the result is true for $n=1$.
Next, assume that $\Gamma(n+1)=n$! and we prove that $\Gamma(n+2)=(n+1)$!.
Compute

$$
\begin{aligned}
\Gamma(n+2) & =\Gamma[(n+1)+1] \\
& =(n+1) \Gamma(n+1) \\
& =(n+1) n! \\
& =(n+1)!
\end{aligned}
$$

which was to be shown.
4. Let $\Gamma:(0, \infty) \rightarrow \mathbb{R}$ be as defined in (1).
(a) Compute $\Gamma(1 / 2)$.

Hint: The change of variable $t=z^{2} / 2$ might come in handy. Recall that if $Z \sim \operatorname{normal}(0,1)$, then its pdf is given by

$$
f_{z}(z)=\frac{e^{-z^{2} / 2}}{\sqrt{2 \pi}} \quad \text { for all } z \in \mathbb{R}
$$

Solution: Compute

$$
\begin{aligned}
\Gamma(1 / 2) & =\int_{0}^{\infty} t^{(1 / 2)-1} e^{-t} \mathrm{~d} t \\
& =\int_{0}^{\infty} \frac{1}{\sqrt{t}} e^{-t} \mathrm{~d} t
\end{aligned}
$$

Make the change of variable $t=z^{2} / 2$ to get $\mathrm{d} t=z \mathrm{~d} z$ and $\sqrt{t}=z / \sqrt{2}$. It then follows that

$$
\begin{aligned}
\Gamma(1 / 2) & =\int_{0}^{\infty} \frac{\sqrt{2}}{z} e^{-z^{2} / 2} z \mathrm{~d} z \\
& =2 \sqrt{\pi} \int_{0}^{\infty} \frac{1}{\sqrt{2 \pi}} e^{-z^{2} / 2} \mathrm{~d} z \\
& =\sqrt{\pi} \int_{-\infty}^{\infty} f_{Z}(z) \mathrm{d} z \\
& =\sqrt{\pi}
\end{aligned}
$$

which was to be shown.
(b) Compute $\Gamma(3 / 2)$.

Solution: Use the result from part (b) of Problem 3 to get that

$$
\Gamma(3 / 2)=\Gamma[(1 / 2)+1]=(1 / 2) \Gamma(1 / 2)=\sqrt{\pi} / 2
$$

5. Use the results of Problems 3 and 4 to derive the identity:

$$
\begin{equation*}
\Gamma\left(\frac{k}{2}\right)=\frac{\Gamma(k) \sqrt{\pi}}{2^{k-1} \Gamma\left(\frac{k+1}{2}\right)} \tag{2}
\end{equation*}
$$

for every positive, odd integer k.
Proof. We proceed by induction on odd k.
For $k=1$ we have, by part (a) of Problem 4 that

$$
\Gamma\left(\frac{1}{2}\right)=\sqrt{\pi}=\frac{\Gamma(1) \sqrt{\pi}}{2^{1-1} \Gamma\left(\frac{1+1}{2}\right)}
$$

since $\Gamma(1)=1$ by part (a) of Problem 3. Thus, the result is true for $k=1$.
Next assume that (2) for an odd integer k; we show that the result is true for the next odd integer $k+2$.
Using part (b) of Problem 3 we get

$$
\begin{aligned}
\Gamma\left(\frac{k+2}{2}\right) & =\Gamma\left(\frac{k}{2}+1\right) \\
& =\frac{k}{2} \cdot \Gamma\left(\frac{k}{2}\right)
\end{aligned}
$$

so that, by the inductive hypothesis (2),

$$
\begin{aligned}
\Gamma\left(\frac{k+2}{2}\right) & =\frac{k}{2} \cdot \frac{\Gamma(k) \sqrt{\pi}}{2^{k-1} \Gamma\left(\frac{k+1}{2}\right)} \\
& =\frac{\Gamma(k+1) \sqrt{\pi}}{2^{k} \Gamma\left(\frac{k+1}{2}\right)} \\
& =\frac{(k+1) \Gamma(k+1) \sqrt{\pi}}{2^{k}(k+1) \Gamma\left(\frac{k+1}{2}\right)} \\
& =\frac{\Gamma(k+2) \sqrt{\pi}}{2^{k+1} \frac{k+1}{2} \Gamma\left(\frac{k+1}{2}\right)} \\
& =\frac{\Gamma(k+2) \sqrt{\pi}}{2^{k+1} \Gamma\left(\frac{k+1}{2}+1\right)} \\
& =\frac{\Gamma(k+2) \sqrt{\pi}}{2^{k+1} \Gamma\left(\frac{k+3}{2}\right)}
\end{aligned}
$$

Hence

$$
\Gamma\left(\frac{k+2}{2}\right)=\frac{\Gamma(k+2) \sqrt{\pi}}{2^{(k+2)-1} \Gamma\left(\frac{(k+2)+1}{2}\right)}
$$

which shows that the result is true for $k+2$.

