Solutions to Assignment \#2

1. The reason that the function $M_{X}(t)$ is called the moment generating function for random variable X is that the $n^{\text {th }}$ derivative of $M_{X}(t)$ at $t=0$ is $E\left(X^{n}\right)$, the $n^{\text {th }}$ moment of the random variable X; that is,

$$
\begin{equation*}
M_{X}^{(n)}(0)=E\left(X^{n}\right) \quad \text { for } n=1,2,3, \ldots \tag{1}
\end{equation*}
$$

(a) Verify (1) for the case in which X is continuous with pdf f_{X}. What assumptions do you need to make about the mgf in your derivation?

Solution: For the case of a continuous random variable, X, with $\operatorname{pdf} f_{X}$, its mgf is given by

$$
M_{X}(t)=\int_{-\infty}^{\infty} e^{t x} f_{X}(x) \mathrm{d} x
$$

for values of t in some interval around 0 . Assuming that

$$
\int_{-\infty}^{\infty}|x|^{n} e^{t x} f_{X}(x) \mathrm{d} x<\infty
$$

for all t in some interval around 0 , since the functions

$$
(x, t) \mapsto x^{n} e^{t x}
$$

are continuous, it follows by differentiating under the integral sign with respect to t that

$$
M_{X}^{(n)}(t)=\int_{-\infty}^{\infty} x^{n} e^{t x} f_{X}(x) \mathrm{d} x \quad \text { for all } n=1,2,3, \ldots
$$

and for t in an interval around 0 . Consequently,

$$
M_{X}^{(n)}(0)=\int_{-\infty}^{\infty} x^{n} f_{X}(x) \mathrm{d} x=E\left(X^{n}\right) \quad \text { for all } n=1,2,3, \ldots
$$

which was to be shown.
(b) Show that if the mgf of X exists on some interval around 0 , then

$$
\operatorname{var}(X)=M_{X}^{\prime \prime}(0)-\left[M_{X}^{\prime}(0)\right]^{2}
$$

Solution: For this problem, we also need to assume that the mgf of X is twice differentiable at 0 . Then,

$$
\begin{aligned}
\operatorname{var}(X) & =E\left[\left(X-\mu_{X}\right)^{2}\right] \\
& =E\left(X^{2}-2 \mu_{X} X+\mu_{x}^{2}\right)
\end{aligned}
$$

where $\mu_{X}=E(X)$. Thus, by the linearity of the expectation operator,

$$
\begin{aligned}
\operatorname{var}(X) & =E\left(X^{2}\right)-2 \mu_{x} E(X)+\mu_{X}^{2} E(1) \\
& =E\left(X^{2}\right)-2 \mu_{X} E(X)+\mu_{X}^{2} E(1) \\
& =E\left(X^{2}\right)-2 \mu_{x} \mu_{X}+\mu_{X}^{2} \\
& =E\left(X^{2}\right)-\mu_{X}^{2} \\
& =E\left(X^{2}\right)-[E(X)]^{2} \\
& =M_{X}^{\prime \prime}(0)-\left[M_{X}^{\prime}(0)\right]^{2}
\end{aligned}
$$

which was to be shown.
2. Let $\lambda>0$. A random variable X is said to follow a $\operatorname{Poisson}(\lambda)$ distribution if X takes the values $0,1,2,3, \ldots$ and the pmf of X is given by

$$
p_{X}(k)=\frac{\lambda^{k}}{k!} e^{-\lambda} \quad \text { for all } k=0,1,2,3, \ldots
$$

Compute the mgf of a Poisson (λ) random variable, X. For which values of t is the mgf defined?

Solution: Compute

$$
\begin{aligned}
M_{X}(t) & =E\left(e^{t X}\right) \\
& =\sum_{k=0}^{\infty} e^{t k} p_{X}(k) \\
& =\sum_{k=0}^{\infty}\left(e^{t}\right)^{k} \frac{\lambda^{k}}{k!} e^{-\lambda} .
\end{aligned}
$$

It then follow that the mgf of $X \sim \operatorname{Poisson}(\lambda)$ is

$$
\begin{aligned}
M_{X}(t) & =e^{-\lambda} \sum_{k=0}^{\infty} \frac{\left(\lambda e^{t}\right)^{k}}{k!} \\
& =e^{-\lambda} e^{\lambda e^{t}} \\
& =e^{\lambda\left(e^{t}-1\right)}
\end{aligned}
$$

for all $t \in \mathbb{R}$.
3. Use the result of Problem 2 to compute the mean and variance of a $\operatorname{Poisson}(\lambda)$ distribution. What do you discover?

Solution: Differentiating the mgf of X obtained in Problem 2 with respect to t, we get

$$
M_{X}^{\prime}(t)=\lambda e^{t} e^{\lambda\left(e^{t}-1\right)}
$$

and

$$
M_{X}^{\prime \prime}(t)=\lambda e^{t} e^{\lambda\left(e^{t}-1\right)}+\lambda^{2} e^{2 t} e^{\lambda\left(e^{t}-1\right)}
$$

We then get that the expected value of X is

$$
E(X)=M_{X}^{\prime}(0)=\lambda,
$$

and the second moment of X is

$$
E\left(X^{2}\right)=M_{X}^{\prime \prime}(0)=\lambda+\lambda^{2}
$$

Consequently, by the result in part (b) of Problem 1, the variance of X is

$$
\operatorname{var}(X)=E\left(X^{2}\right)-\lambda^{2}=\lambda
$$

Thus, the expected value and variance of a Poisson random variable are the same.
4. Let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample from a $\operatorname{Poisson}(\lambda)$ distribution. Define $Y_{n}=X_{1}+X_{2}+\cdots+X_{n}$. Give the sampling distribution for Y_{n}. What do you discover?

Solution: Compute the mgf of $Y_{n}, M_{Y_{n}}(t)=E\left(e^{t Y_{n}}\right)$, to get that

$$
M_{Y_{n}}(t)=M_{X_{1}}(t) \cdot M_{X_{2}}(t) \cdots M_{X_{n}}(t)
$$

where we have used the independence assumption. Thus, since the random variables $X_{1}, X_{2}, \ldots, X_{n}$ are identically distributed, it follows from the result of Problem 2 that

$$
M_{Y_{n}}(t)=\left(e^{\lambda\left(e^{t}-1\right)}\right)^{n}=e^{n \lambda\left(e^{t}-1\right)}
$$

which is the mgf of a Poisson $(n \lambda)$ random variable. It follows that Y_{n} has a Poisson distribution with parameter $n \lambda$.
5. Let $X_{1}, X_{2}, X_{3} \ldots$ be a sequence of random variable satisfying $X_{n} \sim \operatorname{binomial}(n, p)$ for all n. Assume also that $n p=\lambda$, where λ is a fixed parameter.
Compute $M_{X_{n}}(t)$ for all n and determine the limit

$$
\lim _{n \rightarrow \infty} M_{X_{n}}(t)
$$

What do you discover?
Hint: Observe that $p=\frac{\lambda}{n} \rightarrow 0$ as $n \rightarrow \infty$ since λ is assumed to be fixed.
Solution: Compute

$$
M_{X_{n}}(t)=\left(1-p+p e^{t}\right)^{n}=\left(1-\frac{\lambda}{n}+\frac{\lambda}{n} e^{t}\right)^{n}
$$

or

$$
M_{X_{n}}(t)=\left(1+\frac{\lambda\left(e^{t}-1\right)}{n}\right)^{n}
$$

It then follows that

$$
\lim _{n \rightarrow \infty} M_{X_{n}}(t)=\lim _{n \rightarrow \infty}\left(1+\frac{\lambda\left(e^{t}-1\right)}{n}\right)^{n}=e^{\lambda\left(e^{t}-1\right)}
$$

which is the mgf of a Poisson (λ) random variable. Note that we have used the definition of e^{u} as

$$
e^{u}=\lim _{n \rightarrow \infty}\left(1+\frac{u}{n}\right)^{n} \quad \text { for all } u \in \mathbb{R}
$$

