Assignment \#3

Due on Wednesday, September 16, 2009
Read Section 2.2 on Transformations: Bivariate Random Variables, pp. 84-92, in Hogg, Craig and McKean.

Do the following problems

1. Let X and Y be independent continuous random variables with pdfs f_{X} and f_{Y}, respectively. Let $W=X+Y$ and show that the pdf for W is given by

$$
\begin{equation*}
f_{W}(w)=\int_{-\infty}^{+\infty} f_{X}(u) f_{Y}(w-u) \mathrm{d} u \tag{1}
\end{equation*}
$$

for all $w \in \mathbb{R}$. This is known as the convolution of f_{X} and f_{Y}.
Suggestion: To evaluate the double integral defining $P(X+Y \leq z)$, make the change of variables $u=x$ and $v=x+y$. Observe that with this change of variables, the region of integration in the $u v$-plane becomes:

$$
\left\{(u, v) \in \mathbb{R}^{2} \mid-\infty<u<\infty,-\infty<v<z\right\}
$$

Refer to pages 86 and 87 in the text on how to perform a change of variables for a double integral.
2. Let $X \sim$ exponential(2) and $Y \sim \chi^{2}(1)$ be independent random variables. Define $W=X+Y$. Use the convolution formula in (1) to find the pdf of W.
3. We use the notation $f_{X} * f_{Y}$ to denote the convolution of the two pdfs f_{X} and f_{Y} as defined in (1); that is,

$$
f_{X} * f_{Y}(w)=\int_{-\infty}^{+\infty} f_{X}(u) f_{Y}(w-u) \mathrm{d} u \quad \text { for all } w \in \mathbb{R}
$$

Verify that convolution is a symmetric operation; that is,

$$
f_{X} * f_{Y}=f_{Y} * f_{X} .
$$

4. Suppose that the pdf of a random variable, W, is the convolution of two pdfs f_{X} and f_{Y} for two random variables, X and Y.
Verify that

$$
M_{W}(t)=M_{X}(t) \cdot M_{Y}(t)
$$

for t in some interval around 0 where the mgfs of X and Y are both defined; that is, the moment generating function of a convolution is the product of the moment generating functions.
5. Let α and β denote positive real numbers and define $f(x)=C x^{\alpha-1} e^{-x / \beta}$ for $x>0$ and $f(x)=0$ for $x \leqslant 0$, where C denotes a positive real number.
(a) Find the value of C so that f is the pdf for some distribution.
(b) For the value of C found in part (a), let f denote the pdf of a random variable X. Compute the mgf of X.

Hint: The pdf found in part (a) is related to the Gamma function.

