Assignment #3

Due on Wednesday, September 16, 2009

Read Section 2.2 on *Transformations: Bivariate Random Variables*, pp. 84–92, in Hogg, Craig and McKean.

Do the following problems

1. Let X and Y be independent continuous random variables with pdfs f_X and f_Y , respectively. Let W = X + Y and show that the pdf for W is given by

$$f_w(w) = \int_{-\infty}^{+\infty} f_X(u) f_Y(w-u) \, \mathrm{d}u \tag{1}$$

for all $w \in \mathbb{R}$. This is known as the *convolution* of f_x and f_y .

Suggestion: To evaluate the double integral defining $P(X + Y \leq z)$, make the change of variables u = x and v = x + y. Observe that with this change of variables, the region of integration in the uv-plane becomes:

$$\{(u, v) \in \mathbb{R}^2 \mid -\infty < u < \infty, -\infty < v < z\}.$$

Refer to pages 86 and 87 in the text on how to perform a change of variables for a double integral.

- 2. Let $X \sim \text{exponential}(2)$ and $Y \sim \chi^2(1)$ be independent random variables. Define W = X + Y. Use the convolution formula in (1) to find the pdf of W.
- 3. We use the notation $f_X * f_Y$ to denote the convolution of the two pdfs f_X and f_Y as defined in (1); that is,

$$f_X * f_Y(w) = \int_{-\infty}^{+\infty} f_X(u) f_Y(w-u) \, \mathrm{d}u \quad \text{for all } w \in \mathbb{R}.$$

Verify that convolution is a symmetric operation; that is,

$$f_X * f_Y = f_Y * f_X.$$

Suppose that the pdf of a random variable, W, is the convolution of two pdfs f_x and f_y for two random variables, X and Y. Verify that

$$M_{W}(t) = M_{X}(t) \cdot M_{Y}(t)$$

for t in some interval around 0 where the mgfs of X and Y are both defined; that is, the moment generating function of a convolution is the product of the moment generating functions.

- 5. Let α and β denote positive real numbers and define $f(x) = Cx^{\alpha-1}e^{-x/\beta}$ for x > 0 and f(x) = 0 for $x \leq 0$, where C denotes a positive real number.
 - (a) Find the value of C so that f is the pdf for some distribution.
 - (b) For the value of C found in part (a), let f denote the pdf of a random variable X. Compute the mgf of X.

Hint: The pdf found in part (a) is related to the Gamma function.