Solutions to Assignment \#3

1. Let X and Y be independent continuous random variables with pdfs f_{X} and f_{Y}, respectively. Let $W=X+Y$ and show that the pdf for W is given by

$$
\begin{equation*}
f_{W}(w)=\int_{-\infty}^{+\infty} f_{X}(u) f_{Y}(w-u) \mathrm{d} u \tag{1}
\end{equation*}
$$

for all $w \in \mathbb{R}$. This is known as the convolution of f_{X} and f_{Y}.
Suggestion: To evaluate the double integral defining $P(X+Y \leq z)$, make the change of variables $u=x$ and $v=x+y$. Observe that with this change of variables, the region of integration in the $u v$-plane becomes:

$$
\left\{(u, v) \in \mathbb{R}^{2} \mid-\infty<u<\infty,-\infty<v<z\right\}
$$

Refer to pages 86 and 87 in the text on how to perform a change of variables for a double integral.

Solution: We first compute the cdf

$$
F_{W}(w)=P(W \leqslant w) \quad \text { for } w \in \mathbb{R}
$$

where

$$
\begin{aligned}
P(W \leqslant w) & =P(X+Y \leqslant w) \\
& =\iint_{\{x+y \leqslant w\}} f_{(X, Y)}(x, y) \mathrm{d} x \mathrm{~d} y .
\end{aligned}
$$

Since X and Y are independent, the joint pdf of X and Y is given by

$$
f_{(X, Y)}(x, y)=f_{X}(x) \cdot f_{Y}(y)
$$

We then have that

$$
F_{W}(w)=\int_{-\infty}^{\infty} \int_{-\infty}^{w-x} f_{X}(x) \cdot f_{Y}(y) \mathrm{d} y \mathrm{~d} x
$$

see Figure 1.
Next, make the change of variables: $u=x, v=x+y$ to get that

$$
F_{W}(w)=\int_{-\infty}^{w} \int_{-\infty}^{\infty} f_{X}(u) \cdot f_{Y}(v-u)\left|\frac{\partial(x, y)}{\partial(u, v)}\right| \mathrm{d} u \mathrm{~d} v
$$

Figure 1: $\{x+y \leqslant w\}$
where the Jacobian of the change of variables is

$$
\frac{\partial(x, y)}{\partial(u, v)}=\operatorname{det}\left(\begin{array}{cc}
1 & 0 \\
-1 & 1
\end{array}\right)=1
$$

Consequently,

$$
F_{W}(w)=\int_{-\infty}^{w} \int_{-\infty}^{\infty} f_{X}(u) \cdot f_{Y}(v-u) \mathrm{d} u \mathrm{~d} v
$$

Next, differentiate with respect to w to obtain the pdf

$$
f_{W}(w)=\int_{-\infty}^{\infty} f_{X}(u) \cdot f_{Y}(w-u) \mathrm{d} u
$$

where we have applied the Fundamental Theorem of Calculus, which is the convolution formula in (1).
2. Let $X \sim$ exponential(2) and $Y \sim \chi^{2}(1)$ be independent random variables. Define $W=X+Y$. Use the convolution formula in (1) to find the pdf of W.

Solution: Since X and Y are independent, f_{W} is the convolution of f_{X} and f_{Y} :

$$
\begin{aligned}
f_{W}(w) & =f_{X} * f_{Y}(w) \\
& =\int_{-\infty}^{\infty} f_{X}(u) f_{Y}(w-u) \mathrm{d} u
\end{aligned}
$$

where

$$
f_{X}(x)= \begin{cases}\frac{1}{2} e^{-x / 2} & \text { if } x>0 \\ 0 & \text { otherwise }\end{cases}
$$

and

$$
f_{Y}(y)= \begin{cases}\frac{1}{\sqrt{2 \pi}} \frac{1}{\sqrt{y}} e^{-y / 2} & \text { if } y>0 \\ 0 & \text { otherwise }\end{cases}
$$

It then follows that, for $w>0$,

$$
\begin{aligned}
f_{W}(w) & =\int_{0}^{\infty} \frac{1}{2} e^{-u / 2} f_{Y}(w-u) \mathrm{d} u \\
& =\int_{0}^{w} \frac{1}{2} e^{-u / 2} \frac{1}{\sqrt{2 \pi}} \frac{1}{\sqrt{w-u}} e^{-(w-u) / 2} \mathrm{~d} u \\
& =\frac{e^{-w / 2}}{2 \sqrt{2 \pi}} \int_{0}^{w} \frac{1}{\sqrt{w-u}} \mathrm{~d} u
\end{aligned}
$$

Making the change of variables $t=u / w$, we get that $u=w t$ and $\mathrm{d} u=w \mathrm{~d} t$, so that

$$
\begin{aligned}
f_{W}(w) & =\frac{e^{-w / 2}}{2 \sqrt{2 \pi}} \int_{0}^{1} \frac{1}{\sqrt{w-w t}} w \mathrm{~d} t \\
& =\frac{\sqrt{w} e^{-w / 2}}{2 \sqrt{2 \pi}} \int_{0}^{1} \frac{1}{\sqrt{1-t}} \mathrm{~d} t \\
& =\frac{\sqrt{w} e^{-w / 2}}{\sqrt{2 \pi}}[-\sqrt{1-t}]_{0}^{1} \\
& =\frac{1}{\sqrt{2 \pi}} \sqrt{w} e^{-w / 2}
\end{aligned}
$$

for $w>0$. It then follows that

$$
f_{W}(w)= \begin{cases}\frac{1}{\sqrt{2 \pi}} \sqrt{w} e^{-w / 2} & \text { if } w>0 \\ 0 & \text { otherwise }\end{cases}
$$

This is the pdf for a $\chi^{2}(3)$ random variable.
3. We use the notation $f_{X} * f_{Y}$ to denote the convolution of the two pdfs f_{X} and f_{Y} as defined in (1); that is,

$$
f_{X} * f_{Y}(w)=\int_{-\infty}^{+\infty} f_{X}(u) f_{Y}(w-u) \mathrm{d} u \quad \text { for all } w \in \mathbb{R}
$$

Verify that convolution is a symmetric operation; that is,

$$
f_{X} * f_{Y}=f_{Y} * f_{X} .
$$

Solution: Apply the definition of convolution to $f_{Y} * f_{X}$ we get

$$
f_{Y} * f_{x}(w)=\int_{-\infty}^{+\infty} f_{Y}(z) f_{X}(w-z) \mathrm{d} z \quad \text { for all } w \in \mathbb{R}
$$

Next, make the change of variables $u=w-z$ to get $z=w-u$, $\mathrm{d} z=-\mathrm{d} u$ and

$$
f_{Y} * f_{x}(w)=-\int_{+\infty}^{-\infty} f_{Y}(w-u) f_{X}(u) \mathrm{d} u \quad \text { for all } w \in \mathbb{R}
$$

or

$$
f_{Y} * f_{x}(w)=\int_{-\infty}^{+\infty} f_{X}(u) f_{Y}(w-u) \mathrm{d} u \quad \text { for all } w \in \mathbb{R}
$$

which is the definition of $f_{X} * f_{Y}(w)$. Thus, we had verifies the symmetry of the convolution operation.
4. Suppose that the pdf of a random variable, W, is the convolution of two pdfs f_{X} and f_{Y} for two random variables, X and Y.
Verify that

$$
M_{W}(t)=M_{X}(t) \cdot M_{Y}(t)
$$

for t in some interval around 0 where the mgfs of X and Y are both defined; that is, the moment generating function of a convolution is the product of the moment generating functions.

Solution: Using the definition of the mgf we have that

$$
\begin{aligned}
M_{W}(t) & =\int_{-\infty}^{\infty} e^{t w} f_{W}(w) \mathrm{d} w \\
& =\int_{-\infty}^{\infty} e^{t w} f_{X} * f_{Y}(w) \mathrm{d} w \\
& =\int_{-\infty}^{\infty} e^{t w} \int_{-\infty}^{\infty} f_{X}(u) f_{Y}(w-u) \mathrm{d} u \mathrm{~d} w \\
& =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{t w} f_{X}(u) f_{Y}(w-u) \mathrm{d} u \mathrm{~d} w
\end{aligned}
$$

Next, make the change of variables $u=x$ and $w-u=y$ and apply the change of variables formula to get that

$$
M_{W}(t)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{t(x+y)} f_{X}(x) f_{Y}(y)\left|\frac{\partial(u, v)}{\partial(x, y)}\right| \mathrm{d} x \mathrm{~d} y
$$

where

$$
\frac{\partial(u, v)}{\partial(x, y)}=\operatorname{det}\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right)=1
$$

It then follows that

$$
\begin{aligned}
M_{W}(t) & =\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{t x} f_{X}(x) e^{t y} f_{Y}(y) \mathrm{d} x \mathrm{~d} y \\
& =\int_{-\infty}^{\infty} e^{t x} f_{X}(x) \mathrm{d} x \int_{-\infty}^{\infty} e^{t y} f_{Y}(y) \mathrm{d} y \\
& =M_{X}(t) M_{Y}(t)
\end{aligned}
$$

which was to be shown.
5. Let α and β denote positive real numbers and define $f(x)=C x^{\alpha-1} e^{-x / \beta}$ for $x>0$ and $f(x)=0$ for $x \leqslant 0$, where C denotes a positive real number.
(a) Find the value of C so that f is the pdf for some distribution.
(b) For the value of C found in part (a), let f denote the pdf of a random variable X. Compute the mgf of X.

Hint: The pdf found in part (a) is related to the Gamma function.

Solution:

(a) We choose C so that

$$
\int_{-\infty}^{\infty} f(x) \mathrm{d} x=1
$$

or

$$
C \int_{-\infty}^{\infty} x^{\alpha-1} e^{-x / \beta} \mathrm{d} x=1
$$

where, making the change of variables $t=x / \beta$, we have that $x=\beta t, \mathrm{~d} x=\beta \mathrm{d} t$ and

$$
\begin{aligned}
\int_{-\infty}^{\infty} x^{\alpha-1} e^{-x / \beta} \mathrm{d} x & =\int_{-\infty}^{\infty} \beta^{\alpha-1} t^{\alpha-1} e^{-t} \beta \mathrm{~d} t \\
& =\beta^{\alpha} \int_{-\infty}^{\infty} t^{\alpha-1} e^{-t} \mathrm{~d} t \\
& =\beta^{\alpha} \Gamma(\alpha)
\end{aligned}
$$

It then follows that

$$
C=\frac{1}{\beta^{\alpha} \Gamma(\alpha)}
$$

(b) Compute

$$
\begin{aligned}
M_{X}(t) & =\int_{-\infty}^{\infty} e^{t x} f(x) \mathrm{d} x \\
& =C \int_{0}^{\infty} e^{t x} x^{\alpha-1} e^{-x / \beta} \mathrm{d} x \\
& =C \int_{0}^{\infty} x^{\alpha-1} e^{-(1-\beta t) x / \beta} \mathrm{d} x
\end{aligned}
$$

Thus, we must require that $1-\beta t>0$, or

$$
t<\frac{1}{\beta}
$$

Next, make the change of variables $\frac{(1-\beta t) x}{\beta}=z$ to get that

$$
x=\frac{\beta z}{1-\beta t} \quad \text { and } \quad \mathrm{d} x=\frac{\beta}{1-\beta t} \mathrm{~d} z
$$

so that

$$
\begin{aligned}
M_{x}(t) & =C \int_{0}^{\infty} \frac{\beta^{\alpha-1}}{(1-\beta t)^{\alpha-1}} z^{\alpha-1} e^{-z} \frac{\beta}{1-\beta t} \mathrm{~d} z \\
& =\frac{C \beta^{\alpha}}{(1-\beta t)^{\alpha}} \int_{0}^{\infty} z^{\alpha-1} e^{-z} \mathrm{~d} z \\
& =\frac{C \beta^{\alpha} \Gamma(\alpha)}{(1-\beta t)^{\alpha}} \\
& =\frac{1}{(1-\beta t)^{\alpha}}
\end{aligned}
$$

for $t<\frac{1}{\beta}$.

