Assignment #5

Due on Friday, September 25, 2009

Read Section 5.1 on *Sampling and Statistics*, pp. 233–236, in Hogg, Craig and McKean.

Do the following problems

1. Let X denote a random variable having a normal (μ, σ^2) distribution. Define

$$Z = \frac{X - \mu}{\sigma}.$$

Compute the mgf of Z and use it to deduce the distribution of Z.

2. Let X_1, X_2, \ldots, X_n denote a random sample from a normal (μ, σ^2) distribution. Define

$$Z = \frac{\overline{X}_n - \mu}{\sigma/\sqrt{n}},$$

where \overline{X}_n denotes the sample mean. Compute the mgf of Z_n and use it to deduce the distribution of Z_n .

- 3. Let $Z \sim \text{normal}(0, 1)$ and define $X = \mu + \sigma Z$. Compute the mgf of X and use it to deduce the distribution of X.
- 4. Let $\beta > 0$ and X_1, X_2, \ldots, X_n be a random sample from an exponential(β) distribution.

Define $Y_n = \frac{2n\overline{X}_n}{\beta}$, where \overline{X}_n is the sample mean

- (a) Determine the distribution of Y_n .
- (b) For n = 10, find values of c and d so that

$$\mathbf{P}\left(c < \frac{2n\overline{X}_n}{\beta} < d\right) \doteq 0.95.$$

Use this result to give a 95% confidence interval for β based on the sample mean.

- 5. Let X_1, X_2, \ldots, X_n be a random sample from a Poisson distribution with mean λ . Thus, $Y = \sum_{i=1}^{n} X_i$ has a Poisson distribution with mean $n\lambda$. Moreover, by the Central Limit Theorem, $\overline{X} = Y/n$ has, approximately, a normal $(\lambda, \lambda/n)$ distribution for large n.
 - (a) Give the distribution of approximate distribution of

$$\frac{Y/n - \lambda}{\sqrt{\lambda}/\sqrt{n}}$$

for large values of n.

(b) By the weak law of large numbers $|Y/n - \lambda|$ is very close to 0 for large values of n with a very high probability (i.e., probability very close to 1). Use this fact to obtain the approximation

$$\sqrt{Y/n} \approx \sqrt{\lambda} + \frac{1}{2\sqrt{\lambda}}(Y/n - \lambda)$$

for large values of n and very high probability.

(c) Prove that, for large values of n,

$$P\left(2\sqrt{n}\left(\sqrt{Y/n}-\sqrt{\lambda}\right)\leqslant z\right)\approx P(Z\leqslant z) \text{ for all } z\in\mathbb{R}.$$

(d) Explain how you would use the result of part (c) to obtain a confidence interval estimate for the parameter λ .