Solutions to Assignment \#5

1. Let X denote a random variable having a $\operatorname{normal}\left(\mu, \sigma^{2}\right)$ distribution. Define

$$
Z=\frac{X-\mu}{\sigma}
$$

Compute the mgf of Z and use it to deduce the distribution of Z.
Solution: Compute

$$
\begin{aligned}
M_{Z}(t) & =E\left(e^{t Z}\right) \\
& =E\left(e^{(X-\mu) \frac{t}{\sigma}}\right) \\
& =E\left(e^{-\mu t / \sigma} e^{X\left(\frac{t}{\sigma}\right)}\right) \\
& =e^{-\mu t / \sigma} E\left(e^{X\left(\frac{t}{\sigma}\right)}\right) \\
& =e^{-\mu t / \sigma} M_{X}\left(\frac{t}{\sigma}\right)
\end{aligned}
$$

where

$$
M_{X}\left(\frac{t}{\sigma}\right)=e^{\mu t / \sigma+\sigma^{2}(t / \sigma)^{2} / 2}=e^{\mu t / \sigma} \cdot e^{t^{2} / 2}
$$

It then follows that

$$
M_{z}(t)=e^{t^{2} / 2}, \quad \text { for all } t \in \mathbb{R}
$$

which is the mgf of a normal $(0,1)$ distribution. Consequently, $Z \sim$ normal $(0,1)$.
2. Let $X_{1}, X_{2}, \ldots, X_{n}$ denote a random sample from a $\operatorname{normal}\left(\mu, \sigma^{2}\right)$ distribution. Define

$$
Z_{n}=\frac{\bar{X}_{n}-\mu}{\sigma / \sqrt{n}}
$$

where \bar{X}_{n} denotes the sample mean. Compute the mgf of Z_{n} and use it to deduce the distribution of Z_{n}.

Solution: We have seen in class that \bar{X}_{n} has a normal $\left(\mu, \sigma^{2} / n\right)$ distribution. Consequently, by the result of the previous problem,

$$
\frac{\bar{X}_{n}-\mu}{\sigma / \sqrt{n}} \sim \operatorname{normal}(0,1)
$$

Thus, Z_{n} has a normal $(0,1)$ distribution.
3. Let $Z \sim \operatorname{normal}(0,1)$ and define $X=\mu+\sigma Z$. Compute the mgf of X and use it to deduce the distribution of X.

Solution: Compute

$$
\begin{aligned}
M_{X}(t) & =E\left(e^{\mu t+\sigma t Z}\right) \\
& =e^{\mu t} E\left(e^{\sigma t Z}\right) \\
& =e^{\mu t} M_{Z}(\sigma t)
\end{aligned}
$$

where

$$
M_{z}(\sigma t)=e^{(\sigma t)^{2} / 2}=e^{\sigma^{2} t^{2} / 2}
$$

so that

$$
M_{X}(t)=e^{\mu t+\sigma^{2} t^{2} / 2}, \quad \text { for all } t \in \mathbb{R}
$$

which is the mgf of a normal $\left(\mu, \sigma^{2}\right)$ distribution. Consequently, X has a $\operatorname{normal}\left(\mu, \sigma^{2}\right)$ distribution.
4. Let $\beta>0$ and $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample from an exponential (β) distribution.
Define $Y_{n}=\frac{2 n \bar{X}_{n}}{\beta}$, where \bar{X}_{n} is the sample mean
(a) Determine the distribution of Y_{n}.

Solution: We saw in part (c) of problem 2 in Assignment \#1 that the mgf of Y_{n} is

$$
M_{Y_{n}}(t)=\left(\frac{1}{1-2 t}\right)^{n}=\left(\frac{1}{1-2 t}\right)^{2 n / 2} \quad \text { for } \quad t<\frac{1}{2}
$$

which is the mgf for a $\chi^{2}(2 n)$ distribution. Thus, $Y_{n} \sim \chi^{2}(2 n)$.
(b) For $n=10$, find values of c and d so that

$$
\mathrm{P}\left(c<\frac{2 n \bar{X}_{n}}{\beta}<d\right) \doteq 0.95 .
$$

Use this result to give a 95% confidence interval for β based on the sample mean.

Solution: By the result of the previous part,

$$
\mathrm{P}\left(c<\frac{2 n \bar{X}_{n}}{\beta}<d\right)=\mathrm{P}\left(c<Y_{n}<d\right)
$$

where Y_{n} has a χ^{2} distribution with $2 n$ degrees of freedom, or 20 degrees of freedom in this case. Let $F_{Y_{n}}$ denote the cdf of Y_{n}. Then,

$$
\mathrm{P}\left(c<Y_{n}<d\right)=F_{Y_{n}}(d)-F_{Y_{n}}(c) .
$$

to get $\mathrm{P}\left(c<Y_{n}<d\right)=0.95$ we may choose c so that $F_{Y_{n}}(c)=$ 0.025 and d so that $F_{Y_{n}}(d)=0.975$. Thus,

$$
c=F_{Y_{n}}^{-1}(0.025) \quad \text { and } \quad d=F_{Y_{n}}^{-1}(0.975)
$$

Using R or MS Excel we obtain values of c and d. In R use the qchisq function to get

$$
c \approx \operatorname{qchisq}(0.025, \mathrm{df}=20) \approx 9.59
$$

and

$$
d \approx \operatorname{qchisq}(0.975, \mathrm{df}=20) \approx 34.17
$$

In MS Excel, the function CHIINV returns the inverse of the righttail probability for the χ^{2} distribution; in other words,

$$
\operatorname{CHIINV}(\text { probability, } \mathrm{df})=1-F_{Y_{n}}^{-1}(1-\text { probability }) .
$$

we therefore have that the 95% confidence interval for β based on the sample mean can be obtained from

$$
9.59<\frac{20 \bar{X}_{n}}{\beta}<34.17
$$

from which we get

$$
\frac{20}{34.17} \bar{X}_{n}<\beta<\frac{20}{9.59} \bar{X}_{n}
$$

Thus, the 95% confidence interval for β is

$$
\left(0.59 \bar{X}_{n}, 2.09 \bar{X}_{n}\right) .
$$

5. Let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample from a Poisson distribution with mean λ. Thus, $Y=\sum_{i=1}^{n} X_{i}$ has a Poisson distribution with mean $n \lambda$. Moreover, by the Central Limit Theorem, $\bar{X}=Y / n$ has, approximately, a normal $(\lambda, \lambda / n)$ distribution for large n.
(a) Give the distribution of approximate distribution of

$$
\frac{Y / n-\lambda}{\sqrt{\lambda} / \sqrt{n}}
$$

for large values of n.
Solution: Since, Y / n is the sample mean, with expected value λ and variance λ / n, the central limit theorem implies that

$$
\frac{Y / n-\lambda}{\sqrt{\lambda} / \sqrt{n}} \sim \operatorname{normal}(0,1)
$$

for large values of n.
(b) By the weak law of large numbers $|Y / n-\lambda|$ is very close to 0 for large values of n with a very high probability (i.e., probability very close to 1). Use this fact to obtain the approximation

$$
\sqrt{Y / n} \approx \sqrt{\lambda}+\frac{1}{2 \sqrt{\lambda}}(Y / n-\lambda)
$$

for large values of n and very high probability.
Solution: Using the first order approximation around $t=\lambda$ for the function $g(t)=\sqrt{t}$; namely,

$$
g(t) \approx g(\lambda)+g^{\prime}(\lambda)(t-\lambda) \quad \text { for } t \text { close to } \lambda
$$

we obtain that

$$
\sqrt{Y / n} \approx \sqrt{\lambda}+\frac{1}{2 \sqrt{\lambda}}(Y / n-\lambda) \text { for large } n
$$

(c) Prove that, for large values of n,

$$
\mathrm{P}(2 \sqrt{n}(\sqrt{Y / n}-\sqrt{\lambda}) \leqslant z) \approx \mathrm{P}(Z \leqslant z) \quad \text { for all } z \in \mathbb{R}
$$

Solution: From the result of the previous part we have that

$$
2 \sqrt{n}(\sqrt{Y / n}-\sqrt{\lambda}) \approx \frac{Y / n-\lambda}{\sqrt{\lambda} / \sqrt{n}}
$$

so that, by the result from part (a), approximately,

$$
2 \sqrt{n}(\sqrt{Y / n}-\sqrt{\lambda}) \sim \operatorname{normal}(0,1)
$$

for large values of n. Thus,

$$
\mathrm{P}(2 \sqrt{n}|\sqrt{Y / n}-\sqrt{\lambda}|<z) \approx \mathrm{P}(|Z|<z) \text { for } z>0
$$

(d) Explain how you would use the result of part (c) to obtain a confidence interval estimate for the parameter λ.

Solution: Choosing $z_{\alpha / 2}$ for that

$$
\mathrm{P}\left(|Z|<z_{\alpha / 2}\right)=1-\alpha
$$

we obtain the $100(1-\alpha) \%$ confidence interval for λ as follows: First, compute that the approximate $100(1-\alpha) \%$ confidence interval for $\sqrt{\lambda}$

$$
\sqrt{\frac{Y}{n}}-\frac{z_{\alpha / 2}}{2 \sqrt{n}}<\sqrt{\lambda}<\sqrt{\frac{Y}{n}}+\frac{z_{\alpha / 2}}{2 \sqrt{n}}
$$

We can then square all terms in the inequality to obtain an approximate $100(1-\alpha) \%$ confidence interval for λ :

$$
\left(\sqrt{\frac{Y}{n}}-\frac{z_{\alpha / 2}}{2 \sqrt{n}}\right)^{2}<\lambda<\left(\sqrt{\frac{Y}{n}}+\frac{z_{\alpha / 2}}{2 \sqrt{n}}\right)^{2} .
$$

