Assignment \#6

Due on Friday, October 9, 2009
Read Section 5.3 on More on Confidence Intervals, pp. 254-260, in Hogg, Craig and McKean.

Do the following problems

1. Let $X_{1}, X_{2}, \ldots, X_{n}$ denote a random sample from a normal $\left(\mu, \sigma^{2}\right)$ distribution, where μ and σ^{2} are unknown. Suppose that $n=17$ and that the values of $X_{1}, X_{2}, \ldots, X_{n}$ add up to 79.90 and that the sum of the square difference from the values to the sample mean is 92.16 . Give a 90% confidence interval for μ.
2. Let $X_{1}, X_{2}, \ldots, X_{n}$ denote a random sample from a $\operatorname{normal}\left(\mu, \sigma^{2}\right)$ distribution, and let S_{n}^{2} denote the sample variance. Since S_{n}^{2} is an unbiased estimator for σ^{2}, $E\left(S_{n}^{2}\right)=\sigma^{2}$. Compute $\operatorname{var}\left(S_{n}^{2}\right)$; that is, compute the variance of the sampling distribution of S_{n}^{2}.
Suggestion: Use the knowledge that you have about the distribution of $\frac{(n-1)}{\sigma^{2}} S_{n}^{2}$.
3. Let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample from a distribution with finite variance, σ^{2}. Show that

$$
E\left(S_{n}\right) \leqslant \sigma
$$

where S_{n} denotes the positive square root of the sample variance.
Furthermore, prove that $E\left(S_{n}\right)<\sigma$ if $\operatorname{var}\left(S_{n}\right) \neq 0$.
4. Suppose we are sampling from a $\operatorname{Bernoulli}(p)$ distribution. Approximately, what should the sample size, n, be so that a 90% confidence interval for the parameter p has length at most 0.02 .
5. Suppose we are sampling from a Poisson (λ) distribution. A sample of 200 observations from this distribution has mean equal to 3.4. Construct and approximate 90% confidence interval for λ.

