Assignment #6

Due on Friday, October 9, 2009

Read Section 5.3 on *More on Confidence Intervals*, pp. 254–260, in Hogg, Craig and McKean.

Do the following problems

- 1. Let X_1, X_2, \ldots, X_n denote a random sample from a normal (μ, σ^2) distribution, where μ and σ^2 are unknown. Suppose that n = 17 and that the values of X_1, X_2, \ldots, X_n add up to 79.90 and that the sum of the square difference from the values to the sample mean is 92.16. Give a 90% confidence interval for μ .
- 2. Let X_1, X_2, \ldots, X_n denote a random sample from a normal (μ, σ^2) distribution, and let S_n^2 denote the sample variance. Since S_n^2 is an unbiased estimator for σ^2 , $E(S_n^2) = \sigma^2$. Compute var (S_n^2) ; that is, compute the variance of the sampling distribution of S_n^2 .

Suggestion: Use the knowledge that you have about the distribution of $\frac{(n-1)}{\sigma^2}S_n^2$.

3. Let X_1, X_2, \ldots, X_n be a random sample from a distribution with finite variance, σ^2 . Show that

$$E(S_n) \leqslant \sigma,$$

where S_n denotes the positive square root of the sample variance. Furthermore, prove that $E(S_n) < \sigma$ if $var(S_n) \neq 0$.

- 4. Suppose we are sampling from a Bernoulli(p) distribution. Approximately, what should the sample size, n, be so that a 90% confidence interval for the parameter p has length at most 0.02.
- 5. Suppose we are sampling from a $Poisson(\lambda)$ distribution. A sample of 200 observations from this distribution has mean equal to 3.4. Construct and approximate 90% confidence interval for λ .