Solutions to Assignment \#6

1. Let $X_{1}, X_{2}, \ldots, X_{n}$ denote a random sample from a $\operatorname{normal}\left(\mu, \sigma^{2}\right)$ distribution, where μ and σ^{2} are unknown. Suppose that $n=17$ and that the values of $X_{1}, X_{2}, \ldots, X_{n}$ add up to 79.90 and that the sum of the square difference from the values to the sample mean is 92.16 . Give a 90% confidence interval for μ.

Solution: The sample mean for the data is $\bar{X}_{n}=4.7$ and the sample variance is $S_{n}^{2}=5.76$, so that $S_{n}=2.4$. Thus, a 90% confidence interval for μ is given by

$$
\left(4.7-t_{\alpha / 2} \frac{2.4}{\sqrt{17}}, 4.7+t_{\alpha / 2} \frac{2.4}{\sqrt{17}}\right)
$$

where $\alpha=0.1$ in this case. Thus, using MS Excel, R or looking up values in a table we obtain that $t_{\alpha / 2} \approx 1.75$, where we have used the fact that the number of degrees of freedom is 16 in this case. Thus, a 90% confidence interval for the mean is $(4.7-1.02,4.7+1.02)$, or (3.68, 5.72).
2. Let $X_{1}, X_{2}, \ldots, X_{n}$ denote a random sample from a $\operatorname{normal}\left(\mu, \sigma^{2}\right)$ distribution, and let S_{n}^{2} denote the sample variance. Since S_{n}^{2} is an unbiased estimator for σ^{2}, $E\left(S_{n}^{2}\right)=\sigma^{2}$. Compute $\operatorname{var}\left(S_{n}^{2}\right)$; that is, compute the variance of the sampling distribution of S_{n}^{2}.
Suggestion: Use the knowledge that you have about the distribution of $\frac{(n-1)}{\sigma^{2}} S_{n}^{2}$.
Solution: Using the fact that the variance of a $\chi^{2}(n-1)$ distribution is $2(n-1)$ we obtain that

$$
\operatorname{var}\left(\frac{(n-1)}{\sigma^{2}} S_{n}^{2}\right)=2(n-1)
$$

since

$$
\frac{(n-1)}{\sigma^{2}} S_{n}^{2} \sim \chi^{2}(n-1)
$$

It then follows that

$$
\frac{(n-1)^{2}}{\sigma^{4}} \operatorname{var}\left(S_{n}^{2}\right)=2(n-1)
$$

from which we get that

$$
\operatorname{var}\left(S_{n}^{2}\right)=\frac{2 \sigma^{4}}{n-1}
$$

3. Let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample from a distribution with finite variance, σ^{2}. Show that

$$
E\left(S_{n}\right) \leqslant \sigma,
$$

where S_{n} denotes the positive square root of the sample variance.
Furthermore, prove that $E\left(S_{n}\right)<\sigma$ if $\operatorname{var}\left(S_{n}\right) \neq 0$.
Solution: Observe that

$$
0 \leqslant \operatorname{var}\left(S_{n}\right)=E\left(S_{n}^{2}\right)-\left[E\left(S_{n}\right)\right]^{2}=\sigma^{2}-\left[E\left(S_{n}\right)\right]^{2}
$$

It then follows that

$$
\left[E\left(S_{n}\right)\right]^{2} \leqslant \sigma^{2}
$$

from which the result follows. Note that if $\operatorname{var}\left(S_{n}\right) \neq 0$, we get strict inequality.
4. Suppose we are sampling from a $\operatorname{Bernoulli}(p)$ distribution. Approximately, what should the sample size, n, be so that a 90% confidence interval for the parameter p has length at most 0.02 .

Solution: An approximate 90% confidence interval for p, based on the Central Limit Theorem, is based on the approximation

$$
\mathrm{P}\left(\left|\widehat{p}_{n}-p\right|<z_{\alpha / 2} \frac{\sqrt{p(1-p)}}{\sqrt{n}}\right) \approx \mathrm{P}\left(|Z|<z_{\alpha / 2}\right)=0.90
$$

for large values of n. We then have that $z_{\alpha / 2} \approx 1.65$. Observe that $p(1-p)$ is at most $1 / 4$. Consequently, the length of the interval is at most

$$
2 z_{\alpha / 2} \frac{1}{2 \sqrt{n}}=z_{\alpha / 2} \frac{1}{\sqrt{n}}
$$

We want this length to be at most 0.02 . Therefore

$$
z_{\alpha / 2} \frac{1}{\sqrt{n}}<0.02
$$

from which we get that

$$
\frac{\sqrt{n}}{z_{\alpha / 2}}>50
$$

or

$$
n>\left(50 z_{\alpha / 2}\right)^{2} .
$$

Hence, n should be at least 6,807 .
5. Suppose we are sampling from a Poisson (λ) distribution. A sample of 200 observations from this distribution has mean equal to 3.4 . Construct and approximate 90% confidence interval for λ.

Solution: We may use the result obtained in Problem 5 of Assignment \#5:

$$
\left(\left(\sqrt{\frac{Y}{n}}-\frac{z_{\alpha / 2}}{2 \sqrt{n}}\right)^{2},\left(\sqrt{\frac{Y}{n}}+\frac{z_{\alpha / 2}}{2 \sqrt{n}}\right)^{2}\right)
$$

where Y / n is the sample mean, which in this case is 3.4 and $z_{\alpha / 2}$ is 1.65. This yields an approximate 90% confidence interval for λ to be (3.2, 3.6).

