Assignment \#7

Due on Monday, October 12, 2009
Read Section 5.3 on More on Confidence Intervals, pp. 254-260, in Hogg, Craig and McKean.

Do the following problems

1. Assume that a random variable, T, has a t distribution with n degrees of freedom. Define $X=T^{2}$. Determine the distribution of X.
2. Recall that in Problem 3 of Assignment \#4 you verified that if X and Y are independent random variables with pdfs f_{X} and f_{Y}, respectively, and $W=Y / X$, then the pdf of W is given by

$$
\begin{equation*}
f_{W}(w)=\int_{-\infty}^{\infty}|u| f_{X}(u) f_{Y}(w u) \mathrm{d} u \tag{1}
\end{equation*}
$$

Suppose that X and Y are independent exponential(1) random variables and define $W=Y / X$. Compute the pdf of W and determine the type of distribution that W has.
3. Let $X \sim \chi^{2}(n-1)$ and $Y \sim \chi^{2}(m-1)$ be independent random variables and define $W=\frac{Y /(m-1)}{X /(n-1)}$. Use the formula in (1) to compute the pdf of W. Determine the type of distribution that W has.
4. Let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample from a $\operatorname{normal}\left(\mu_{X}, \sigma^{2}\right)$ distribution and $Y_{1}, Y_{2}, \ldots, Y_{m}$ be a random sample from $\operatorname{anormal}\left(\mu_{Y}, \sigma^{2}\right)$. Let S_{X}^{2} denote the sample variance of the random sample $X_{1}, X_{2}, \ldots, X_{n}$ and S_{Y}^{2} that of the random sample $Y_{1}, Y_{2}, \ldots, Y_{m}$. Determine the distribution of S_{Y}^{2} / S_{X}^{2} and use that information to show how to find $\mathrm{P}\left(\frac{S_{Y}^{2}}{S_{X}^{2}}>c\right)$ for any $c>0$.
5. Let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample from a normal $\left(\mu_{X}, \sigma_{X}^{2}\right)$ distribution and $Y_{1}, Y_{2}, \ldots, Y_{m}$ be a random sample from a $\operatorname{normal}\left(\mu_{Y}, \sigma_{Y}^{2}\right)$. Let S_{X}^{2} denote the sample variance of the random sample $X_{1}, X_{2}, \ldots, X_{n}$ and S_{Y}^{2} that of the random sample $Y_{1}, Y_{2}, \ldots, Y_{m}$. Determine the distribution of $\frac{S_{Y}^{2} / \sigma_{Y}^{2}}{S_{X}^{2} / \sigma_{X}^{2}}$ and use that information to explain how to find a 95% confidence interval for $\sigma_{Y}^{2} / \sigma_{X}^{2}$.

