Assignment #7

Due on Monday, October 12, 2009

Read Section 5.3 on *More on Confidence Intervals*, pp. 254–260, in Hogg, Craig and McKean.

Do the following problems

- 1. Assume that a random variable, T, has a t distribution with n degrees of freedom. Define $X = T^2$. Determine the distribution of X.
- 2. Recall that in Problem 3 of Assignment #4 you verified that if X and Y are independent random variables with pdfs f_X and f_Y , respectively, and W = Y/X, then the pdf of W is given by

$$f_W(w) = \int_{-\infty}^{\infty} |u| f_X(u) f_Y(wu) \, \mathrm{d}u.$$
(1)

Suppose that X and Y are independent exponential(1) random variables and define W = Y/X. Compute the pdf of W and determine the type of distribution that W has.

- 3. Let $X \sim \chi^2(n-1)$ and $Y \sim \chi^2(m-1)$ be independent random variables and define $W = \frac{Y/(m-1)}{X/(n-1)}$. Use the formula in (1) to compute the pdf of W. Determine the type of distribution that W has.
- 4. Let X_1, X_2, \ldots, X_n be a random sample from a normal (μ_X, σ^2) distribution and Y_1, Y_2, \ldots, Y_m be a random sample from a normal (μ_Y, σ^2) . Let S_X^2 denote the sample variance of the random sample X_1, X_2, \ldots, X_n and S_Y^2 that of the random sample Y_1, Y_2, \ldots, Y_m . Determine the distribution of S_Y^2/S_X^2 and use that information to show how to find $P\left(\frac{S_Y^2}{S_X^2} > c\right)$ for any c > 0.
- 5. Let X_1, X_2, \ldots, X_n be a random sample from a normal (μ_X, σ_X^2) distribution and Y_1, Y_2, \ldots, Y_m be a random sample from a normal (μ_Y, σ_Y^2) . Let S_X^2 denote the sample variance of the random sample X_1, X_2, \ldots, X_n and S_Y^2 that of the random sample Y_1, Y_2, \ldots, Y_m . Determine the distribution of $\frac{S_Y^2/\sigma_Y^2}{S_X^2/\sigma_X^2}$ and use that information to explain how to find a 95% confidence interval for σ_Y^2/σ_X^2 .