Solutions to Assignment \#7

1. Assume that a random variable, T, has a t distribution with n degrees of freedom. Define $X=T^{2}$. Determine the distribution of X.

Solution: First, compute the cdf of T :

$$
\begin{aligned}
F_{X}(x) & =\mathrm{P}(X \leqslant x), \quad \text { for } x>0 \\
& =\mathrm{P}\left(T^{2} \leqslant x\right) \\
& =\mathrm{P}(|T| \leqslant \sqrt{x}) \\
& =\mathrm{P}(-\sqrt{x} \leqslant T \leqslant \sqrt{x}) \\
& =\mathrm{P}(-\sqrt{x}<T \leqslant \sqrt{x})
\end{aligned}
$$

where we have used the fact that T is a continuous random variable.
Thus,

$$
F_{X}(x)=F_{T}(\sqrt{x})-F_{T}(-\sqrt{x}), \text { for } x>0
$$

Differentiating with respect to x yields

$$
f_{X}(x)=f_{T}(\sqrt{x}) \cdot \frac{1}{2 \sqrt{x}}+f_{T}(-\sqrt{x}) \cdot \frac{1}{2 \sqrt{x}}, \quad \text { for } \quad x>0
$$

where we have used the chain rule. Consequently, by the symmetry of the pdf for the T distribution,

$$
f_{X}(x)=\frac{1}{\sqrt{x}} f_{T}(\sqrt{x}), \quad \text { for } \quad x>0
$$

where

$$
f_{T}(t)=\frac{\Gamma((n+1) / 2)}{\Gamma(n / 2)} \frac{1}{\sqrt{n \pi}} \frac{1}{\left(1+\left(t^{2} / n\right)\right)^{(n+1) / 2}}, \quad \text { for } \quad-\infty<t<\infty
$$

It then follows that

$$
f_{X}(x)=\frac{\Gamma((n+1) / 2)}{\Gamma(n / 2)} \frac{1}{\sqrt{n \pi}} \frac{x^{-1 / 2}}{(1+(x / n))^{(n+1) / 2}}, \quad \text { for } \quad x>0
$$

or

$$
f_{X}(x)=\frac{\Gamma((n+1) / 2)}{\Gamma(1 / 2) \Gamma(n / 2)}\left(\frac{1}{n}\right)^{1 / 2} \frac{x^{-1 / 2}}{(1+(x / n))^{(n+1) / 2}}, \quad \text { for } \quad x>0
$$

which is the pdf of an $F(1, n)$ random variable. Consequently, $X=T^{2}$ has an $F(1, n)$ distribution.
2. Recall that in Problem 3 of Assignment \#4 you verified that if X and Y are independent random variables with pdfs f_{X} and f_{Y}, respectively, and $W=Y / X$, then the pdf of W is given by

$$
\begin{equation*}
f_{W}(w)=\int_{-\infty}^{\infty}|u| f_{X}(u) f_{Y}(w u) \mathrm{d} u \tag{1}
\end{equation*}
$$

Suppose that X and Y are independent exponential(1) random variables and define $W=Y / X$. Compute the pdf of W and determine the type of distribution that W has.

Solution: The pdfs of X and Y are

$$
f_{X}(x)= \begin{cases}e^{-x} & \text { if } x>0 \\ 0 & \text { if } x \leqslant 0\end{cases}
$$

and

$$
f_{Y}(y)= \begin{cases}e^{-y} & \text { if } y>0 \\ 0 & \text { if } y \leqslant 0\end{cases}
$$

respectively. We then have that

$$
f_{W}(w)=\int_{0}^{\infty} u e^{-u} f_{Y}(w u) \mathrm{d} u
$$

Thus, for $w \leqslant 0, f_{W}(w)=0$, and, for $w>0$,

$$
\begin{aligned}
f_{W}(w) & =\int_{0}^{\infty} u e^{-u} e^{-w u} \mathrm{~d} u \\
& =\int_{0}^{\infty} u e^{-(1+w) u} \mathrm{~d} u
\end{aligned}
$$

Integration by parts then yields

$$
f_{W}(w)=\frac{1}{(1+w)^{2}} \quad \text { for } \quad w>0
$$

which is the pdf of an $F(2,2)$ random variable. Hence, W has an $F(2,2)$ distribution.
3. Let $X \sim \chi^{2}(n-1)$ and $Y \sim \chi^{2}(m-1)$ be independent random variables and define $W=\frac{Y /(m-1)}{X /(n-1)}$. Use the formula in (1) to compute the pdf of W. Determine the type of distribution that W has.

Solution: We first determine the pdfs of $Y /(m-1)$ and $X /(n-1)$ so we can apply formula (1). Write $U=X /(n-1)$. Then, the cdf of U is

$$
\begin{aligned}
F_{U}(u) & =\mathrm{P}(U \leqslant u) \\
& =\mathrm{P}\left(\frac{X}{n-1} \leqslant u\right) \\
& =\mathrm{P}(\leqslant(n-1) u) \\
& =F_{X}((n-1) u) .
\end{aligned}
$$

Differentiating with respect to u we then obtain that

$$
f_{U}(u)=(n-1) f_{X}((n-1) u)
$$

Thus the pdf on $X /(n-1)$ is

$$
f_{U}(u)=(n-1) \frac{1}{\Gamma((n-1) / 2) 2^{(n-1) / 2}}[(n-1) u]^{((n-1) / 2)-1} e^{-(n-1) u / 2}
$$

for $u>0$, which we can re-write us

$$
f_{U}(u)=\frac{(n-1)^{(n-1) / 2}}{\Gamma((n-1) / 2) 2^{(n-1) / 2}} u^{((n-1) / 2)-1} e^{-(n-1) u / 2}
$$

for $u>0$, and 0 for $u \leqslant 0$. Similarly, the pdf for $V=Y /(m-1)$ is

$$
f_{V}(v)=\frac{(m-1)^{(m-1) / 2}}{\Gamma((m-1) / 2) 2^{(m-1) / 2}} v^{((m-1) / 2)-1} e^{-(m-1) v / 2}
$$

for $v>0$ and 0 for $v \leqslant 0$. Using the formula in (1) we then have that the pdf for $W=V / U$ is

$$
\begin{aligned}
f_{W}(w) & =\int_{0}^{\infty} u \frac{(n-1)^{(n-1) / 2}}{\Gamma((n-1) / 2) 2^{(n-1) / 2}} u^{((n-1) / 2)-1} e^{-(n-1) u / 2} f_{V}(w u) \mathrm{d} u \\
& =\int_{0}^{\infty} \frac{(n-1)^{(n-1) / 2}}{\Gamma((n-1) / 2) 2^{(n-1) / 2}} u^{(n-1) / 2} e^{-(n-1) u / 2} f_{V}(w u) \mathrm{d} u
\end{aligned}
$$

Then, for $w \leqslant 0, f_{W}(w)=0$ and, for $w>0$

$$
f_{W}(w)=C_{m, n} \int_{0}^{\infty} u^{(n-1) / 2} e^{-(n-1) u / 2}(w u)^{((m-1) / 2)-1} e^{-(m-1) w u / 2} \mathrm{~d} u
$$

where the constant $C_{m, n}$ is given by

$$
C_{m, n}=\frac{(n-1)^{(n-1) / 2}(m-1)^{(m-1) / 2}}{\Gamma((n-1) / 2) \Gamma((m-1) / 2) 2^{(n-1) / 2} 2^{(m-1) / 2}} .
$$

Thus,

$$
f_{W}(w)=C_{m, n} w^{\left(\nu_{1} / 2\right)-1} \int_{0}^{\infty} u^{\left(\nu_{1}+\nu_{2}\right) / 2-1} e^{-\left(\nu_{2}+\nu_{1} w\right) u / 2} \mathrm{~d} u
$$

where we have written ν_{1} for $m-1$ and ν_{2} for $n-1$. Next, make the change of variables $z=\left(\nu_{2}+\nu_{1} w\right) u / 2$, so that $u=\frac{2}{\nu_{2}+\nu_{1} w} z$ and

$$
\begin{aligned}
f_{W}(w) & =C_{m, n} \frac{2^{\left(\nu_{1}+\nu_{2}\right) / 2}}{\left(\nu_{2}+\nu_{1} w\right)^{\left(\nu_{1}+\nu_{2}\right) / 2}} w^{\left(\nu_{1}-2\right) / 2} \int_{0}^{\infty} z^{\left(\nu_{1}+\nu_{2}\right) / 2-1} e^{-z} \mathrm{~d} z \\
& =C_{m, n} \frac{2^{\left(\nu_{1}+\nu_{2}\right) / 2} \Gamma\left(\left(\nu_{1}+\nu_{2}\right) / 2\right)}{\left(\nu_{2}+\nu_{1} w\right)^{\left(\nu_{1}+\nu_{2}\right) / 2}} w^{\left(\nu_{1}-2\right) / 2}
\end{aligned}
$$

Observe that $C_{m, n}$ can be written in terms of ν_{1} and ν_{2} as follows:

$$
C_{m, n}=\frac{\nu_{1}^{\nu_{1} / 2} \nu_{2}^{\nu_{2} / 2}}{\Gamma\left(\nu_{1} / 2\right) \Gamma\left(\nu_{2} / 2\right) 2^{\nu_{1} / 2} 2^{\nu_{2} / 2}} .
$$

It then follows that

$$
\begin{aligned}
f_{W}(w) & =\frac{\Gamma\left(\left(\nu_{1}+\nu_{2}\right) / 2\right)}{\Gamma\left(\nu_{1} / 2\right) \Gamma\left(\nu_{2} / 2\right)} \frac{\nu_{1}^{\nu_{1} / 2} \nu_{2}^{\nu_{2} / 2}}{\nu_{2}^{\left(\nu_{1}+\nu_{2}\right) / 2}} \frac{w^{\left(\nu_{1}-2\right) / 2}}{\left(1+\nu_{1} w / \nu_{2}\right)^{\left(\nu_{1}+\nu_{2}\right) / 2}} \\
& =\frac{\Gamma\left(\left(\nu_{1}+\nu_{2}\right) / 2\right)}{\Gamma\left(\nu_{1} / 2\right) \Gamma\left(\nu_{2} / 2\right)} \frac{\nu_{1}^{\nu_{1} / 2}}{\nu_{2}^{\nu_{1} / 2}} \frac{w^{\left(\nu_{1}-2\right) / 2}}{\left(1+\nu_{1} w / \nu_{2}\right)^{\left(\nu_{1}+\nu_{2}\right) / 2}},
\end{aligned}
$$

which is the pdf of an $F\left(\nu_{1}, \nu_{2}\right)$ random variable. It then follows that $W=\frac{Y /(m-1)}{X /(n-1)}$ has an $F(m-1, n-1)$ distribution.
4. Let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample from a $\operatorname{normal}\left(\mu_{X}, \sigma^{2}\right)$ distribution and $Y_{1}, Y_{2}, \ldots, Y_{m}$ be a random sample from a $\operatorname{normal}\left(\mu_{Y}, \sigma^{2}\right)$. Let S_{X}^{2} denote the sample variance of the random sample $X_{1}, X_{2}, \ldots, X_{n}$ and S_{Y}^{2} that of the random sample $Y_{1}, Y_{2}, \ldots, Y_{m}$. Determine the distribution of S_{Y}^{2} / S_{X}^{2} and use that information to show how to find $\mathrm{P}\left(\frac{S_{Y}^{2}}{S_{X}^{2}}>c\right)$ for any $c>0$.

Solution: Write $\frac{S_{Y}^{2}}{S_{X}^{2}}=\frac{\frac{1}{\sigma^{2}} S_{Y}^{2}}{\frac{1}{\sigma^{2}} S_{X}^{2}}$ and note that

$$
\frac{m-1}{\sigma^{2}} S_{Y}^{2} \sim \chi^{2}(m-1) \quad \text { and } \quad \frac{n-1}{\sigma^{2}} S_{X}^{2} \sim \chi^{2}(n-1)
$$

Putting $V=\frac{m-1}{\sigma^{2}} S_{Y}^{2}$ and $U=\frac{n-1}{\sigma^{2}} S_{X}^{2}$, we see that $\frac{S_{Y}^{2}}{S_{X}^{2}}=$ $\frac{V /(m-1)}{U /(n-1)}$, where

$$
V \sim \chi^{2}(m-1) \quad \text { and } \quad U \sim \chi^{2}(n-1)
$$

Since V and U are independent, as they come from two independent random samples, it follows from Problem 3 that S_{Y}^{2} / S_{X}^{2} has an $F(m-$ $1, n-1)$ distribution.
Knowing m and n, we can then use an F distribution table, or some statistical software, to determine $\mathrm{P}\left(\frac{S_{Y}^{2}}{S_{X}^{2}}>c\right)$ for any $c>0$.
5. Let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample from a normal $\left(\mu_{X}, \sigma_{X}^{2}\right)$ distribution and $Y_{1}, Y_{2}, \ldots, Y_{m}$ be a random sample from a $\operatorname{normal}\left(\mu_{Y}, \sigma_{Y}^{2}\right)$. Let S_{X}^{2} denote the sample variance of the random sample $X_{1}, X_{2}, \ldots, X_{n}$ and S_{Y}^{2} that of the random sample $Y_{1}, Y_{2}, \ldots, Y_{m}$. Determine the distribution of $\frac{S_{Y}^{2} / \sigma_{Y}^{2}}{S_{X}^{2} / \sigma_{X}^{2}}$ and use that information to explain how to find a 95% confidence interval for $\sigma_{Y}^{2} / \sigma_{X}^{2}$.

Solution: Put $V=\frac{m-1}{\sigma_{Y}^{2}} S_{Y}^{2}$ and $U=\frac{n-1}{\sigma_{X}^{2}} S_{X}^{2}$. Then,

$$
\frac{S_{Y}^{2} / \sigma_{Y}^{2}}{S_{X}^{2} / \sigma_{X}^{2}}=\frac{V /(m-1)}{U /(n-1)},
$$

where $V \sim \chi^{2}(m-1)$ and $U \sim \chi^{2}(n-1)$. Since V and U are independent, as they come from two independent random samples, it follows from Problem 3 that $\frac{S_{Y}^{2} / \sigma_{Y}^{2}}{S_{X}^{2} / \sigma_{X}^{2}}$ has an $F(m-1, n-1)$ distribution. We can then find c and d such that $c<d$ and

$$
\mathrm{P}\left(\frac{S_{Y}^{2} / \sigma_{Y}^{2}}{S_{X}^{2} / \sigma_{X}^{2}}<c\right)=\frac{\alpha}{2} \quad \text { and } \quad \mathrm{P}\left(\frac{S_{Y}^{2} / \sigma_{Y}^{2}}{S_{X}^{2} / \sigma_{X}^{2}}<d\right)=1-\frac{\alpha}{2} .
$$

Then

$$
\mathrm{P}\left(c<\frac{S_{Y}^{2} / \sigma_{Y}^{2}}{S_{X}^{2} / \sigma_{X}^{2}}<d\right)=1-\alpha,
$$

or

$$
\mathrm{P}\left(c<\frac{S_{Y}^{2} / S_{X}^{2}}{\sigma_{Y}^{2} / \sigma_{X}^{2}}<d\right)=1-\alpha,
$$

or

$$
\mathrm{P}\left(\frac{1}{d}<\frac{\sigma_{Y}^{2} / \sigma_{X}^{2}}{S_{Y}^{2} / S_{X}^{2}}<\frac{1}{c}\right)=1-\alpha
$$

or

$$
\mathrm{P}\left(\frac{S_{Y}^{2} / S_{X}^{2}}{d}<\sigma_{Y}^{2} / \sigma_{X}^{2}<\frac{S_{Y}^{2} / S_{X}^{2}}{c}\right)=1-\alpha .
$$

Hence, the interval

$$
\left(\frac{S_{Y}^{2} / S_{X}^{2}}{d}, \frac{S_{Y}^{2} / S_{X}^{2}}{c}\right)
$$

is a $100(1-\alpha) \%$ confidence interval for $\sigma_{Y}^{2} / \sigma_{X}^{2}$. The 95% confidence interval is obtained with $\alpha=0.05$.

