Assignment #8

Due on Friday, October 16, 2009

Read Section 5.7 on Chi-Square Tests, pp. 278–284, in Hogg, Craig and McKean.

Background and Definitions

• Covariance. Given random variables X and Y, the covariance of X and Y is defined to be

$$\operatorname{cov}(X, Y) = E[(X - \mu_X)(Y - \mu_Y)],$$

where $\mu_X = E(X)$ and $\mu_Y = E(Y)$.

• Conditional Distribution. Given two discrete random variables, X and Y, with joint probability mass function (pmf) $p_{(X,Y)}(k,\ell)$, the conditional pmf of X given Y, denoted $p_{X|Y}(\ell \mid k)$, is defined to be

$$p_{_{X|Y}}(\ell \mid k) = \frac{p_{_{(X,Y)}}(\ell,k)}{p_{_{Y}}(k)},$$

where the marginal pdf of Y at k, $p_Y(k)$ is assumed to be positive. The distribution determined by $p_{X|Y}$ is called the conditional distribution of X, given Y.

• Multinomial Distribution. Let n and k denote positive integers. Let p_1, p_2, \ldots, p_k denote numbers satisfying $0 \leq p_i \leq 1$ for all $i = 1, 2, \ldots, k$ and

$$\sum_{i=1}^{k} p_i = 1.$$

Suppose that X_1, X_2, \ldots, X_k with discrete random variables with joint pmf given by

$$p_{(X_1,X_2,\dots,X_k)}(n_1,n_2,\dots,n_k) = \begin{cases} \frac{n!}{n_1!n_2!\cdots n_k!} p_1^{n_1} p_2^{n_2} \cdots p_k^{n_k} & \text{if } \sum_{i=1}^k n_k = n; \\ 0 & \text{otherwise,} \end{cases}$$

we then say that the random vector (X_1, X_2, \ldots, X_k) has a multinomial distribution with parameters n, p_1, p_2, \ldots, p_k .

Do the following problems

- 1. Let the random vector (X_1, X_2) have a multinomial distribution with parameters n, p_1, p_2 .
 - (a) Give the marginal distributions for X_1 and X_2 and compute $E(X_i)$ for i = 1, 2.
 - (b) Show that X_1 and X_2 are not independent and compute the covariance, $cov(X_1, X_2)$, of X_1 and X_2 .
- 2. Given two random variables, X and Y, the joint moment generating function of X and Y, denoted by $M_{(X,Y)}(t_1, t_2)$, is defined to be be

$$M_{(X,Y)}(t_1, t_2) = E(e^{t_1 X + t_2 Y})$$

for (t_1, t_2) in some neighborhood of the origin in \mathbb{R}^2 .

Let the random vector (X_1, X_2) have a multinomial distribution with parameters n, p_1, p_2 .

- (a) Compute the joint mgf of (X_1, X_2) .
- (b) Verify that $\operatorname{cov}(X_1, X_2) = \frac{\partial^2 M}{\partial t_1 \partial t_2}(0, 0) \frac{\partial M}{\partial t_1}(0, 0) \frac{\partial M}{\partial t_2}(0, 0)$, where $M = M_{(X_1, X_2)}$.
- 3. Let X_1 and X_2 be independent Poisson (λ) random variables. For a fixed value of n (n = 0, 1, 2, 3, ...), determine the conditional distribution of X_1 given that $X_1 + X_2 = n$.
- 4. Let X_1, X_2, \ldots, X_k be independent random variables satisfying $X_i \sim \text{Poisson}(\lambda_i)$ for positive parameters $\lambda_1, \lambda_2, \ldots, \lambda_k$. For a fixed value of n $(n = 0, 1, 2, 3, \ldots)$, determine the conditional distribution of the random vector (X_1, X_2, \ldots, X_k) given that $X_1 + X_2 + \cdots + X_k = n$.
- 5. Let the random vector (X_1, X_2) have a multinomial distribution with parameters n, p_1, p_2 . Define the random variable $Q = \frac{(X_1 np_1)^2}{np_1} + \frac{(X_2 np_2)^2}{np_2}$. Show that for large values of n, Q has, approximately, a $\chi^2(1)$ distribution. Suggestion Use the result of part (a) in Problem 1 and apply the Central Limit Theorem.