Assignment \#8

Due on Friday, October 16, 2009
Read Section 5.7 on Chi-Square Tests, pp. 278-284, in Hogg, Craig and McKean.

Background and Definitions

- Covariance. Given random variables X and Y, the covariance of X and Y is defined to be

$$
\operatorname{cov}(X, Y)=E\left[\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right)\right],
$$

where $\mu_{X}=E(X)$ and $\mu_{Y}=E(Y)$.

- Conditional Distribution. Given two discrete random variables, X and Y, with joint probability mass function $(\mathrm{pmf}) p_{(X, Y)}(k, \ell)$, the conditional pmf of X given Y, denoted $p_{X \mid Y}(\ell \mid k)$, is defined to be

$$
p_{X \mid Y}(\ell \mid k)=\frac{p_{(X, Y)}(\ell, k)}{p_{Y}(k)},
$$

where the marginal pdf of Y at $k, p_{Y}(k)$ is assumed to be positive. The distribution determined by $p_{X \mid Y}$ is called the conditional distribution of X, given Y.

- Multinomial Distribution. Let n and k denote positive integers. Let $p_{1}, p_{2}, \ldots, p_{k}$ denote numbers satisfying $0 \leqslant p_{i} \leqslant 1$ for all $i=1,2, \ldots, k$ and

$$
\sum_{i=1}^{k} p_{i}=1
$$

Suppose that $X_{1}, X_{2}, \ldots, X_{k}$ with discrete random variables with joint pmf given by

$$
p_{\left(X_{1}, X_{2}, \ldots, x_{k}\right)}\left(n_{1}, n_{2}, \ldots, n_{k}\right)= \begin{cases}\frac{n!}{n_{1}!n_{2}!\cdots n_{k}!} p_{1}^{n_{1}} p_{2}^{n_{2}} \cdots p_{k}^{n_{k}} & \text { if } \sum_{i=1}^{k} n_{k}=n \\ 0 & \text { otherwise }\end{cases}
$$

we then say that the random vector $\left(X_{1}, X_{2}, \ldots, X_{k}\right)$ has a multinomial distribution with parameters $n, p_{1}, p_{2}, \ldots, p_{k}$.

Do the following problems

1. Let the random vector $\left(X_{1}, X_{2}\right)$ have a multinomial distribution with parameters n, p_{1}, p_{2}.
(a) Give the marginal distributions for X_{1} and X_{2} and compute $E\left(X_{i}\right)$ for $i=1,2$.
(b) Show that X_{1} and X_{2} are not independent and compute the covariance, $\operatorname{cov}\left(X_{1}, X_{2}\right)$, of X_{1} and X_{2}.
2. Given two random variables, X and Y, the joint moment generating function of X and Y, denoted by $M_{(X, Y)}\left(t_{1}, t_{2}\right)$, is defined to be be

$$
M_{(X, Y)}\left(t_{1}, t_{2}\right)=E\left(e^{t_{1} X+t_{2} Y}\right)
$$

for $\left(t_{1}, t_{2}\right)$ in some neighborhood of the origin in \mathbb{R}^{2}.
Let the random vector $\left(X_{1}, X_{2}\right)$ have a multinomial distribution with parameters n, p_{1}, p_{2}.
(a) Compute the joint mgf of $\left(X_{1}, X_{2}\right)$.
(b) Verify that $\operatorname{cov}\left(X_{1}, X_{2}\right)=\frac{\partial^{2} M}{\partial t_{1} \partial t_{2}}(0,0)-\frac{\partial M}{\partial t_{1}}(0,0) \frac{\partial M}{\partial t_{2}}(0,0)$, where $M=$ $M_{\left(X_{1}, X_{2}\right)}$.
3. Let X_{1} and X_{2} be independent Poisson (λ) random variables. For a fixed value of $n(n=0,1,2,3, \ldots)$, determine the conditional distribution of X_{1} given that $X_{1}+X_{2}=n$.
4. Let $X_{1}, X_{2}, \ldots, X_{k}$ be independent random variables satisfying $X_{i} \sim \operatorname{Poisson}\left(\lambda_{i}\right)$ for positive parameters $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$. For a fixed value of $n(n=0,1,2,3, \ldots)$, determine the conditional distribution of the random vector $\left(X_{1}, X_{2}, \ldots, X_{k}\right)$ given that $X_{1}+X_{2}+\cdots+X_{k}=n$.
5. Let the random vector $\left(X_{1}, X_{2}\right)$ have a multinomial distribution with parameters n, p_{1}, p_{2}. Define the random variable $Q=\frac{\left(X_{1}-n p_{1}\right)^{2}}{n p_{1}}+\frac{\left(X_{2}-n p_{2}\right)^{2}}{n p_{2}}$. Show that for large values of n, Q has, approximately, a $\chi^{2}(1)$ distribution.
Suggestion Use the result of part (a) in Problem 1 and apply the Central Limit Theorem.

