Solutions to Assignment \#8

1. Let the random vector $\left(X_{1}, X_{2}\right)$ have a multinomial distribution with parameters n, p_{1}, p_{2}.
(a) Give the marginal distributions for X_{1} and X_{2} and compute $E\left(X_{i}\right)$ for $i=1,2$.

Solution: Compute, for $n_{1}=0,1,2, \ldots, n$,

$$
\begin{aligned}
p_{X_{1}}\left(n_{1}\right) & =\sum_{\substack{n_{2} \\
n_{2}=n-n_{1}}} \frac{n!}{n_{1}!n_{2}!} p_{1}^{n_{1}} p_{2}^{n_{2}} \\
& =\frac{n!}{n_{1}!\left(n-n_{1}\right)!} p_{1}^{n_{1}}\left(1-p_{1}\right)^{n-n_{1}},
\end{aligned}
$$

since $p_{1}+p_{2}=1$. This is the pmf for a $\operatorname{binomial}\left(n, p_{1}\right)$ random variable. Hence, $X_{1} \sim \operatorname{binomial}\left(n, p_{1}\right)$. Similarly, $X_{2} \sim$ $\operatorname{binomial}\left(n, p_{2}\right)$. It then follows that

$$
E\left(X_{i}\right)=n p_{i} \quad \text { for } i=1,2 .
$$

(b) Show that X_{1} and X_{2} are not independent and compute the covariance, $\operatorname{cov}\left(X_{1}, X_{2}\right)$, of X_{1} and X_{2}.

Solution: Note that

$$
\begin{aligned}
\mathrm{P}\left(X_{1}=n_{1}, X_{2}=n_{2}\right) & =\mathrm{P}\left(X_{1}=n_{1}, X_{1}=n-n_{2}\right) \\
& = \begin{cases}\frac{n!}{n_{1}!n_{2}!} p_{1}^{n_{1}} p_{2}^{n_{2}} & \text { if } n_{1}+n_{2}=n \\
0 & \text { otherwise. }\end{cases}
\end{aligned}
$$

while

$$
p_{X_{1}}\left(n_{1}\right) p_{\left(X_{2}\right.}\left(n_{2}\right)=\frac{n!}{n_{1}!n_{2}!} p_{1}^{n_{1}} \frac{n!}{n_{1}!n_{2}!} p_{2}^{n_{1}}
$$

for $n_{1}+n_{2}=n$. Thus, X_{1} and X_{1} are not independent.

To find $\operatorname{cov}\left(X_{1}, X_{2}\right)$ compute

$$
\begin{aligned}
\operatorname{cov}\left(X_{1}, X_{2}\right) & =E\left[\left(X_{1}-n p_{1}\right)\left(X_{2}-n p_{2}\right)\right] \\
& =E\left[X_{1}\left(X_{2}-n p_{2}\right)-n p_{1}\left(X_{2}-n p_{2}\right)\right] \\
& =E\left[X_{1} X_{2}-n p_{2} X_{1}\right]-n p_{1} E\left(X_{2}-n p_{2}\right) \\
& =E\left[X_{1} X_{2}\right]-n p_{2} E\left[X_{1}\right] \\
& =E\left[X_{1} X_{2}\right]-n^{2} p_{2} p_{1} \\
& =E\left[X_{1} X_{2}\right]-n^{2}\left(1-p_{1}\right) p_{1} \\
& =E\left[X_{1} X_{2}\right]-n^{2} p_{1}+n^{2} p_{1}^{2} \\
& =E\left[X_{1} X_{2}\right]-n^{2} p_{1}+\left(E\left(X_{1}\right)\right)^{2},
\end{aligned}
$$

where

$$
\begin{aligned}
E\left[X_{1} X_{2}\right] & =E\left[X_{1}\left(n-X_{1}\right)\right] \\
& =E\left[n X_{1}-X_{1}^{2}\right] \\
& =n E\left[X_{1}\right]-E\left[X_{1}^{2}\right] \\
& =n^{2} p_{1}-E\left[X_{1}^{2}\right] .
\end{aligned}
$$

It then follows that

$$
\begin{aligned}
\operatorname{cov}\left(X_{1}, X_{2}\right) & =-E\left(X_{1}^{2}\right)+\left(E\left(X_{1}\right)\right)^{2} \\
& =-\operatorname{var}\left(X_{1}\right) \\
& =-n p_{1}\left(1-p_{1}\right) \\
& =-n p_{1} p_{2} .
\end{aligned}
$$

2. Given two random variables, X and Y, the joint moment generating function of X and Y, denoted by $M_{(X, Y)}\left(t_{1}, t_{2}\right)$, is defined to be be

$$
M_{(X, Y)}\left(t_{1}, t_{2}\right)=E\left(e^{t_{1} X+t_{2} Y}\right)
$$

for $\left(t_{1}, t_{2}\right)$ in some neighborhood of the origin in \mathbb{R}^{2}.
Let the random vector $\left(X_{1}, X_{2}\right)$ have a multinomial distribution with parameters n, p_{1}, p_{2}.
(a) Compute the joint mgf of $\left(X_{1}, X_{2}\right)$.

Solution: Compute

$$
\begin{aligned}
M_{\left(X_{1}, X_{2}\right)}\left(t_{1}, t_{2}\right) & =E\left(e^{t_{1} X_{1}+t_{2} X_{2}}\right) \\
& =\sum_{\substack{n_{1}, n_{2} \\
n_{1}+n_{2}=n}} e^{t_{1} n_{1}+t_{2} n_{2}} \frac{n!}{n_{1}!n_{2}!} p_{1}^{n_{1}} p_{2}^{n_{2}} \\
& =\sum_{\substack{n_{1}, n_{2} \\
n_{1}+n_{2}=n}} \frac{n!}{n_{1}!n_{2}!}\left(p_{1} e^{t_{1}}\right)^{n_{1}}\left(p_{2} e^{t_{2}}\right)^{n_{2}} \\
& =\left(p_{1} e^{t_{1}}+p_{2} e^{t_{2}}\right)^{n}
\end{aligned}
$$

by the binomial theorem.
(b) Verify that $\operatorname{cov}\left(X_{1}, X_{2}\right)=\frac{\partial^{2} M}{\partial t_{1} \partial t_{2}}(0,0)-\frac{\partial M}{\partial t_{1}}(0,0) \frac{\partial M}{\partial t_{2}}(0,0)$, where $M=$ $M_{\left(X_{1}, X_{2}\right)}$.

Solution: Write $M\left(t_{1}, t_{2}\right)=\left(p_{1} e^{t_{1}}+p_{2} e^{t_{2}}\right)^{n}$ and compute

$$
\begin{aligned}
\frac{\partial M}{\partial t_{1}}\left(t_{1}, t_{2}\right) & =n\left(p_{1} e^{t_{1}}+p_{2} e^{t_{2}}\right)^{n-1} \cdot p_{1} e^{t_{1}} \\
& =n p_{1} e^{t_{1}}\left(p_{1} e^{t_{1}}+p_{2} e^{t_{2}}\right)^{n-1}
\end{aligned}
$$

Similarly,

$$
\frac{\partial M}{\partial t_{2}}\left(t_{1}, t_{2}\right)=n p_{2} e^{t_{2}}\left(p_{1} e^{t_{1}}+p_{2} e^{t_{2}}\right)^{n-1}
$$

Differentiating one more time we get

$$
\begin{aligned}
\frac{\partial^{2} M}{\partial t_{1} \partial t_{2}}\left(t_{1}, t_{2}\right) & =n p_{2} e^{t_{2}} \cdot(n-1) p_{1} e^{t_{1}}\left(p_{1} e^{t_{1}}+p_{2} e^{t_{2}}\right)^{n-2} \\
& =n(n-1) p_{1} p_{2} e^{t_{1}+t_{2}}\left(p_{1} e^{t_{1}}+p_{2} e^{t_{2}}\right)^{n-2}
\end{aligned}
$$

We then have that

$$
\begin{aligned}
\frac{\partial^{2} M}{\partial t_{1} \partial t_{2}}(0,0) & =n(n-1) p_{1} p_{2}\left(p_{1}+p_{2}\right)^{n-2} \\
& =n(n-1) p_{1} p_{2}
\end{aligned}
$$

since $p_{1}+p_{2}=1$.
Similarly

$$
\begin{aligned}
\frac{\partial M}{\partial t_{1}}(0,0) \frac{\partial M}{\partial t_{2}}(0,0) & =n^{2} p_{1} p_{2}\left(p_{1}+p_{2}\right)^{2(n-1)} \\
& =n^{2} p_{1} p_{2}
\end{aligned}
$$

We then have that

$$
\frac{\partial^{2} M}{\partial t_{1} \partial t_{2}}(0,0)-\frac{\partial M}{\partial t_{1}}(0,0) \frac{\partial M}{\partial t_{2}}(0,0)=-n p_{1} p_{2}
$$

which is the value for $\operatorname{cov}\left(X_{1}, X_{2}\right)$ that we got in part (b) of Problem 1.
3. Let X_{1} and X_{2} be independent Poisson (λ) random variables. For a fixed value of $n(n=0,1,2,3, \ldots)$, determine the conditional distribution of X_{1} given that $X_{1}+X_{2}=n$.

Solution: Let $Y=X_{1}+X_{2}$. Then, since X_{1} and X_{2} are independent $\operatorname{Poisson}(\lambda)$ random variables, $Y \sim \operatorname{Poisson}(2 \lambda)$; so that the pmf of Y is

$$
p_{Y}(m)=\frac{(2 \lambda)^{m}}{m!} e^{-2 \lambda} \text { for } m=0,1,2, \ldots
$$

We want to determine the conditional distribution of X_{1} given $Y=n$.
For $k=0,1,2, \ldots, n$, compute

$$
\begin{aligned}
p_{X_{1} \mid Y}(k \mid n) & =\frac{\mathrm{P}\left(X_{1}=k, Y=n\right)}{\mathrm{P}(Y=n)} \\
& =\frac{\mathrm{P}\left(X_{1}=k, X_{1}+X_{2}=n\right)}{p_{Y}(n)} \\
& =\frac{\mathrm{P}\left(X_{1}=k, X_{2}=n-k\right)}{p_{Y}(n)} \\
& =\frac{p_{X_{1}}(k) \cdot p_{X_{2}}(n-k)}{p_{Y}(n)}
\end{aligned}
$$

by the independence of X_{1} and X_{2}, where

$$
p_{X_{1}}(k)=\frac{\lambda^{k}}{k!} e^{-\lambda}
$$

and

$$
p_{X_{2}}(n-k)=\frac{\lambda^{n-k}}{(n-k)!} e^{-\lambda} .
$$

We then have that

$$
\begin{aligned}
p_{X_{1} \mid Y}(k \mid n) & =\frac{p_{X_{1}}(k) \cdot p_{X_{2}}(n-k)}{p_{Y}(n)} \\
& =\frac{\frac{\lambda^{k}}{k!} e^{-\lambda} \cdot \frac{\lambda^{n-k}}{(n-k)!} e^{-\lambda}}{\frac{(2 \lambda)^{n}}{n!} e^{-2 \lambda}} \\
& =\frac{n!}{k!(n-k)!}\left(\frac{1}{2}\right)^{n}
\end{aligned}
$$

which is the pmf of a binomial $(n, 1 / 2)$ random variable. It then follows that

$$
\left(X_{1} \mid Y=n\right) \sim \operatorname{binomial}(n, 1 / 2)
$$

4. Let $X_{1}, X_{2}, \ldots, X_{k}$ be independent random variables satisfying $X_{i} \sim \operatorname{Poisson}\left(\lambda_{i}\right)$ for positive parameters $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$. For a fixed value of $n(n=0,1,2,3, \ldots)$, determine the conditional distribution of the random vector $\left(X_{1}, X_{2}, \ldots, X_{k}\right)$ given that $X_{1}+X_{2}+\cdots+X_{k}=n$.

Solution: Write $Y=X_{1}+X_{2}+\cdots+X_{k}$; then, since $X_{1}, X_{2}, \ldots, X_{k}$ are independent Poisson $\left(\lambda_{i}\right)$ random variables, respectively, $Y \sim \operatorname{Poisson}(\lambda)$, where

$$
\lambda=\sum_{j=1}^{k} \lambda_{j} .
$$

We want to determine the conditional distribution of

$$
\left(X_{1}, X_{2}, \ldots, X_{k}\right) \mid Y=n
$$

For nonnegative integers $n_{1}, n_{2}, \ldots, n_{k}$ such that $n_{1}+n_{2}+\cdots+n_{k}=n$, compute

$$
\begin{aligned}
& \left.p_{\left(X_{1}, X_{2}, \ldots, X_{k}\right) \mid Y}\left(n_{1}, n_{2}, \ldots, n_{k}\right) \mid n\right) \\
& \quad=\frac{\mathrm{P}\left(X_{1}=n_{1}, X_{2}=n_{2}, \ldots, X_{k}=n_{k}, Y=n\right)}{\mathrm{P}(Y=n)} \\
& =\frac{\mathrm{P}\left(X_{1}=n_{1}, X_{2}=n_{2}, \ldots, X_{k}=n-n_{1}-n_{2}-\cdots-n_{k-1}\right)}{p_{Y}(n)} \\
& =\frac{p_{X_{1}}\left(n_{1}\right) \cdot p_{X_{2}}\left(n_{2}\right) \cdots p_{X_{k}}\left(n-n_{1}-n_{2}-\cdots-n_{k-1}\right)}{p_{Y}(n)},
\end{aligned}
$$

by the independence of $X_{1}, X_{2}, \ldots, X_{k}$. We then have that

$$
\begin{aligned}
& \left.p_{\left(X_{1}, X_{2}, \ldots, x_{k}\right) \mid Y}\left(n_{1}, n_{2}, \ldots, n_{k}\right) \mid n\right) \\
& =\frac{\frac{\lambda_{1}^{n_{1}}}{n_{1}!} e^{-\lambda_{1}} \cdot \frac{\lambda_{2}^{n_{2}}}{n_{2}!} e^{-\lambda_{2}} \cdots \frac{\lambda_{k}^{n-n_{1}-n_{2}-\cdots-n_{k-1}}}{\left(n-n_{1}-n_{2}-\cdots-n_{k-1}\right)!} e^{-\lambda_{k}}}{\frac{\lambda^{n}}{n!} e^{-\lambda}} \\
& =\frac{n!}{n_{1}!n_{2}!\cdots n_{k}!} \cdot \frac{\lambda_{1}^{n_{1}} \lambda_{2}^{n_{2}} \cdots \lambda_{k}^{n_{k}}}{\lambda^{n}} \\
& =\frac{n!}{n_{1}!n_{2}!\cdots n_{k}!} \cdot \frac{\lambda_{1}^{n_{1}} \lambda_{2}^{n_{2}} \cdots \lambda_{k}^{n_{k}}}{\lambda^{n_{1}+n_{2}+\cdots+n_{k}}} \\
& =\frac{n!}{n_{1}!n_{2}!\cdots n_{k}!} \cdot\left(\frac{\lambda_{1}}{\lambda}\right)^{n_{1}} \cdot\left(\frac{\lambda_{2}}{\lambda}\right)^{n_{2}} \cdots\left(\frac{\lambda_{k}}{\lambda}\right)^{n_{k}},
\end{aligned}
$$

which is the pmf of a multinomial $\left(n, \frac{\lambda_{1}}{\lambda}, \frac{\lambda_{2}}{\lambda}, \ldots, \frac{\lambda_{k}}{\lambda}\right)$ random vector. Hence, $\left(X_{1}, X_{2}, \ldots, X_{k}\right) \mid Y=n$ has a multinomial $\left(n, \frac{\lambda_{1}}{\lambda}, \frac{\lambda_{2}}{\lambda}, \ldots, \frac{\lambda_{k}}{\lambda}\right)$
distribution, where $\lambda=\sum_{j=1}^{k} \lambda_{j}$.
5. Let the random vector $\left(X_{1}, X_{2}\right)$ have a multinomial distribution with parameters n, p_{1}, p_{2}. Define the random variable $Q=\frac{\left(X_{1}-n p_{1}\right)^{2}}{n p_{1}}+\frac{\left(X_{2}-n p_{2}\right)^{2}}{n p_{2}}$. Show that for large values of n, Q has, approximately, a $\chi^{2}(1)$ distribution.
Suggestion Use the result of part (b) in Problem 1 and apply the Central Limit Theorem.

Solution: Since $X_{1} \operatorname{binomial}\left(n, p_{1}\right)$, the random variable

$$
\frac{X_{1}-n p_{1}}{\sqrt{n p_{1}\left(1-p_{1}\right)}}
$$

has an approximate normal $(0,1)$ distribution for large values of n. Consequently, for large values of n,

$$
\frac{\left(X_{1}-n p_{1}\right)^{2}}{n p_{1}\left(1-p_{1}\right)}
$$

has an approximate $\chi^{2}(1)$ distribution.
Note that we can write

$$
\begin{aligned}
\frac{\left(X_{1}-n p_{1}\right)^{2}}{n p_{1}\left(1-p_{1}\right)} & =\frac{\left(X_{1}-n p_{1}\right)^{2}\left(1-p_{1}\right)+\left(X_{1}-n p_{1}\right)^{2} p_{1}}{n p_{1}\left(1-p_{1}\right)} \\
& =\frac{\left(X_{1}-n p_{1}\right)^{2}}{n p_{1}}+\frac{\left(X_{1}-n p_{1}\right)^{2}}{n\left(1-p_{1}\right)} \\
& =\frac{\left(X_{1}-n p_{1}\right)^{2}}{n p_{1}}+\frac{\left(n-X_{2}-n p_{1}\right)^{2}}{n\left(1-p_{1}\right)} \\
& =\frac{\left(X_{1}-n p_{1}\right)^{2}}{n p_{1}}+\frac{\left(X_{2}-n\left(1-p_{1}\right)\right)^{2}}{n\left(1-p_{1}\right)} \\
& =\frac{\left(X_{1}-n p_{1}\right)^{2}}{n p_{1}}+\frac{\left(X_{2}-n p_{2}\right)^{2}}{n p_{2}}
\end{aligned}
$$

which is the Pearson Chi-Square statistic, Q, for $k=2$. We have therefore proved that, for large values of n, the random variable

$$
Q=\frac{\left(X_{1}-n p_{1}\right)^{2}}{n p_{1}}+\frac{\left(X_{2}-n p_{2}\right)^{2}}{n p_{2}}
$$

has an approximate $\chi^{2}(1)$ distribution.

