Exam 2

October 30, 2009
Name: \qquad
This is a closed book exam. Show all significant work and justify all your answers. Use your own paper and/or the paper provided by the instructor. You have 50 minutes to work on the following 5 problems. Relax.

1. Define the following terms:
(a) Significance level of a hypothesis test.
(b) Type II error
(c) Power of a test
(d) p-value
(e) Simple hypothesis
2. Let $X_{1}, X_{2}, \ldots, X_{n}$ be a set of random variables with mean μ and variance σ^{2}, and let $\bar{X}_{n}=\frac{1}{n} \sum_{i=1}^{n} X_{i}$ and $S_{n}^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}_{n}\right)^{2}$. State the assumption(s) needed to make the following statements true.
(a) $\frac{\bar{X}_{n}-\mu}{S_{n} / \sqrt{n}} \sim t(n-1)$.
(b) $\sum_{i=1}^{n} \frac{\left(X_{i}-\mu\right)^{2}}{\sigma^{2}} \sim \chi^{2}(n)$.
3. In a simple genetic model, if both the mother and the father of a child have genotype $G g$, then there is probability $1 / 4$ that the child will have genotype $G G$, probability $1 / 2$ of genotype $G g$, and probability $1 / 4$ of genotype $g g$. In a random sample of 24 children having both parents with genotype $G g$, it is found that 10 have genotype $G G, 10$ have genotype $G g$, and 4 have genotype $g g$. Perform an appropriate test on the data to determine whether the data are consistent with the genetic model. Explain your reasoning.
4. A test of $\mathrm{H}_{o}: \lambda=1$ against $\mathrm{H}_{1}: \lambda>1$ is based on a test statistic, T, with a Poisson (λ) distribution. Suppose the observed value of the test statistic is $\widehat{T}=3$.
(a) Compute the p-value for the test.
(b) Can H_{o} be rejected at the $\alpha=0.05$ significance level?
5. Suppose that $X_{1}, X_{2}, \ldots, X_{n}$ is a random sample from a $\operatorname{normal}(\mu, 1)$ distribution. We wish to test the hypothesis $\mathrm{H}_{o}: \mu=\mu_{o}$ against the alternative $\mathrm{H}_{1}: \mu \neq \mu_{o}$. A sample of size $n=25$ is drawn and the following rejection region is set

$$
R: \quad\left|\bar{X}_{n}-\mu_{o}\right|>c
$$

for some critical value c.
(a) Determine a value of c so that the significance level of the test is $\alpha=0.05$.
(b) Find and expression in terms of standard normal probabilities for the power function of this test.
(c) If $\mu=\mu_{o}-\frac{1}{5}$, compute the probability of a Type II error.

