Exam 2

October 30, 2009

Name: _____

This is a closed book exam. Show all significant work and justify all your answers. Use your own paper and/or the paper provided by the instructor. You have 50 minutes to work on the following 5 problems. Relax.

- 1. Define the following terms:
 - (a) Significance level of a hypothesis test.
 - (b) Type II error
 - (c) Power of a test
 - (d) p-value
 - (e) Simple hypothesis
- 2. Let X_1, X_2, \ldots, X_n be a set of random variables with mean μ and variance σ^2 , and let $\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$ and $S_n^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X}_n)^2$. State the assumption(s) needed to make the following statements true.

(a)
$$\frac{\overline{X}_n - \mu}{S_n / \sqrt{n}} \sim t(n-1).$$

(b) $\sum_{i=1}^n \frac{(X_i - \mu)^2}{\sigma^2} \sim \chi^2(n)$

3. In a simple genetic model, if both the mother and the father of a child have genotype Gg, then there is probability 1/4 that the child will have genotype GG, probability 1/2 of genotype Gg, and probability 1/4 of genotype gg. In a random sample of 24 children having both parents with genotype Gg, it is found that 10 have genotype GG, 10 have genotype Gg, and 4 have genotype gg. Perform an appropriate test on the data to determine whether the data are consistent with the genetic model. Explain your reasoning.

- 4. A test of H_o : $\lambda = 1$ against H_1 : $\lambda > 1$ is based on a test statistic, T, with a Poisson(λ) distribution. Suppose the observed value of the test statistic is $\widehat{T} = 3$.
 - (a) Compute the p-value for the test.
 - (b) Can H_o be rejected at the $\alpha = 0.05$ significance level?
- 5. Suppose that X_1, X_2, \ldots, X_n is a random sample from a normal $(\mu, 1)$ distribution. We wish to test the hypothesis $H_o: \mu = \mu_o$ against the alternative $H_1: \mu \neq \mu_o$. A sample of size n = 25 is drawn and the following rejection region is set

$$R: \quad |\overline{X}_n - \mu_o| > c,$$

for some critical value c.

- (a) Determine a value of c so that the significance level of the test is $\alpha = 0.05$.
- (b) Find and expression in terms of standard normal probabilities for the power function of this test.
- (c) If $\mu = \mu_o \frac{1}{5}$, compute the probability of a Type II error.