Review Problems for Exam 1

1. Let X and Y be independent normal $(0,1)$ random variables and define $W=$ $\frac{(X-Y)^{2}}{2}$. Give the distribution of W.
Suggestion: First, determine the distribution of $X-Y$.
2. Let X denote a random variable with mgf $M_{X}(t)$ defined on some interval around 0 . Put $S(t)=\ln \left(M_{X}(t)\right)$ and prove that

$$
S^{\prime}(0)=E(X) \quad \text { and } \quad S^{\prime \prime}(0)=\operatorname{var}(X)
$$

3. A median of a distribution of a random variable, X, is a value, m, such that

$$
\mathrm{P}(X \leqslant m) \geqslant \frac{1}{2} \quad \text { and } \quad \mathrm{P}(X \geqslant m) \geqslant \frac{1}{2}
$$

(a) Prove that if X is continuous with pdf f_{X}, then a median m satisfies

$$
\int_{-\infty}^{m} f_{X}(x) \mathrm{d} x=\int_{m}^{+\infty} f_{X}(x) \mathrm{d} x=\frac{1}{2}
$$

(b) Let $\beta>0$ and $X \sim \operatorname{exponential}(\beta)$. Compute a median of X. Is the value you obtained the only median of the distribution? How does your answer compare with the mean of the distribution?
(c) Show that if X is a continuous random variable, and m is a median of the the distribution of X, then m a number which minimizes the expression

$$
h(t)=E(|X-t|) \quad \text { for } \quad t \in \mathbb{R}
$$

That is, $E(|X-m|)=\min _{t \in \mathbb{R}} E(|X-t|)$.
4. Give a random variable, X, of expected value μ and variance σ^{2}, the skewness of the distribution of X, denoted $\operatorname{Skew}(X)$, is defined to be

$$
\operatorname{Skew}(X)=\frac{E(X-\mu)^{3}}{\sigma^{3}}
$$

(a) Let $\beta>0$ and $X \sim \operatorname{exponential}(\beta)$. Compute a skewness of X.
(b) Let $Z \sim \operatorname{normal}(0,1)$. Compute the skewness of Z.
5. Let X and Y be independent, normal $\left(0, \sigma^{2}\right)$ random variables, and define

$$
U=X^{2}+Y^{2} \quad \text { and } \quad V=\frac{X}{\sqrt{U}}
$$

(a) Find the joint pdf, $f_{(U, V)}$, of U and V.
(b) Show that U and V are independent random variables.
6. Let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample from a distribution with pdf f_{X}, and let \bar{X}_{n} denote the sample mean. Prove that the pdf of the sample mean satisfies

$$
f_{\bar{x}_{n}}(t)=n f_{Y}(n t), \quad \text { for all } t \in \mathbb{R}
$$

where $Y=\sum_{i=1}^{n} X_{i}$.
7. Let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample from a $\operatorname{Gamma}(2, \theta)$ distribution, where θ is an unknown parameter. Define $Y=\sum_{i=1}^{n} X_{i}$.
(a) Find the distribution of Y and determine c so that the statistic $T=c Y$ is an unbiased estimator for θ.
(b) If $n=5$, show that

$$
\mathrm{P}\left(9.59<\frac{2 Y}{\theta}<34.2\right) \approx 0.95
$$

(c) Use Part (b) to show that if a sample of size $n=5$ is collected from a Gamma $(2, \theta)$ distribution, and the sum of the values of the sample is y, then the interval

$$
\left(\frac{2 y}{34.2}, \frac{2 y}{9.59}\right)
$$

is a 95% confidence interval for θ.
(d) Suppose the values in a random sample of size $n=5$ from a Gamma $(2, \theta)$ distribution are:

$$
\begin{array}{lllll}
44.8079 & 1.5215 & 12.1929 & 12.5734 & 43.2305
\end{array}
$$

Use the data to obtain a point estimate for θ and a 95% confidence interval for θ.
Give an interpretation of your result.
8. Let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample from a $\operatorname{normal}\left(\mu, \sigma^{2}\right)$ distribution and define the statistic

$$
T_{n}=\sum_{i=1}^{n}\left(X_{i}-\bar{X}_{n}\right)^{2}
$$

where \bar{X}_{n} denotes the sample mean. We will show later in this course that $\frac{1}{\sigma^{2}} T_{n}$ has a χ^{2} distribution with $n-1$ degrees of freedom.
(a) Explain how you would use knowledge of the distribution of $\frac{1}{\sigma^{2}} T_{n}$ to obtain a $100(1-\alpha) \%$ confidence interval for the variance σ^{2} of a normal $\left(\mu, \sigma^{2}\right)$ distribution based on a random sample of size n from that distribution.
(b) Give a 90% confidence interval for the variance of a normal $\left(\mu, \sigma^{2}\right)$ distribution based on the statistic T_{n}, where the sample size, n, is 20 .
9. Let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample from a distribution with unknown expectation, μ, and unknown variance, σ^{2}. Define the statistic

$$
T_{n}=\sum_{i=1}^{n}\left(X_{i}-\bar{X}_{n}\right)^{2},
$$

where \bar{X}_{n} denotes the sample mean.
(a) Starting with

$$
\left(X_{i}-\mu\right)^{2}=\left[\left(X_{i}-\bar{X}_{n}\right)+\left(\bar{X}_{n}-\mu\right)\right]^{2},
$$

where \bar{X}_{n} denotes the sample mean, derive the identity

$$
\begin{equation*}
\sum_{i=1}^{n}\left(X_{i}-\mu\right)^{2}=T_{n}+n\left(\bar{X}_{n}-\mu\right)^{2} \tag{1}
\end{equation*}
$$

(b) Take expectations on both sides of equation (1) to derive a formula for $E\left(T_{n}\right)$ in terms of σ^{2}. Is T_{n} an unbiased estimator for σ^{2} ?

