Review Problems for Exam 1

1. Let X and Y be independent normal(0,1) random variables and define $W = \frac{(X-Y)^2}{2}$. Give the distribution of W.

Suggestion: First, determine the distribution of X - Y.

2. Let X denote a random variable with mgf $M_X(t)$ defined on some interval around 0. Put $S(t) = \ln(M_X(t))$ and prove that

$$S'(0) = E(X)$$
 and $S''(0) = var(X)$.

3. A median of a distribution of a random variable, X, is a value, m, such that

$$P(X \leq m) \ge \frac{1}{2}$$
 and $P(X \ge m) \ge \frac{1}{2}$.

(a) Prove that if X is continuous with pdf f_x , then a median m satisfies

$$\int_{-\infty}^{m} f_{X}(x) \, \mathrm{d}x = \int_{m}^{+\infty} f_{X}(x) \, \mathrm{d}x = \frac{1}{2}.$$

- (b) Let $\beta > 0$ and $X \sim \text{exponential}(\beta)$. Compute a median of X. Is the value you obtained the only median of the distribution? How does your answer compare with the mean of the distribution?
- (c) Show that if X is a continuous random variable, and m is a median of the the distribution of X, then m a number which minimizes the expression

$$h(t) = E(|X - t|) \quad \text{for } t \in \mathbb{R}.$$

That is, $E(|X - m|) = \min_{t \in \mathbb{R}} E(|X - t|).$

4. Give a random variable, X, of expected value μ and variance σ^2 , the *skewness* of the distribution of X, denoted Skew(X), is defined to be

$$Skew(X) = \frac{E(X-\mu)^3}{\sigma^3}.$$

- (a) Let $\beta > 0$ and $X \sim \text{exponential}(\beta)$. Compute a skewness of X.
- (b) Let $Z \sim \text{normal}(0, 1)$. Compute the skewness of Z.

5. Let X and Y be independent, normal $(0, \sigma^2)$ random variables, and define

$$U = X^2 + Y^2$$
 and $V = \frac{X}{\sqrt{U}}$.

- (a) Find the joint pdf, $f_{(U,V)}$, of U and V.
- (b) Show that U and V are independent random variables.
- 6. Let X_1, X_2, \ldots, X_n be a random sample from a distribution with pdf f_X , and let \overline{X}_n denote the sample mean. Prove that the pdf of the sample mean satisfies

$$f_{\overline{X}_n}(t) = n f_Y(nt), \text{ for all } t \in \mathbb{R},$$

where $Y = \sum_{i=1}^{n} X_i$.

- 7. Let X_1, X_2, \ldots, X_n be a random sample from a Gamma $(2, \theta)$ distribution, where θ is an unknown parameter. Define $Y = \sum_{i=1}^{n} X_i$.
 - (a) Find the distribution of Y and determine c so that the statistic T = cY is an unbiased estimator for θ .
 - (b) If n = 5, show that

$$P\left(9.59 < \frac{2Y}{\theta} < 34.2\right) \approx 0.95.$$

(c) Use Part (b) to show that if a sample of size n = 5 is collected from a Gamma $(2, \theta)$ distribution, and the sum of the values of the sample is y, then the interval

$$\left(\frac{2y}{34.2}, \frac{2y}{9.59}\right)$$

is a 95% confidence interval for θ .

(d) Suppose the values in a random sample of size n = 5 from a Gamma $(2, \theta)$ distribution are:

44.8079 1.5215 12.1929 12.5734 43.2305

Use the data to obtain a point estimate for θ and a 95% confidence interval for θ .

Give an interpretation of your result.

8. Let X_1, X_2, \ldots, X_n be a random sample from a normal (μ, σ^2) distribution and define the statistic

$$T_n = \sum_{i=1}^n (X_i - \overline{X}_n)^2,$$

where \overline{X}_n denotes the sample mean. We will show later in this course that $\frac{1}{\sigma^2}T_n$ has a χ^2 distribution with n-1 degrees of freedom.

- (a) Explain how you would use knowledge of the distribution of $\frac{1}{\sigma^2}T_n$ to obtain a 100(1 - α)% confidence interval for the variance σ^2 of a normal(μ, σ^2) distribution based on a random sample of size n from that distribution.
- (b) Give a 90% confidence interval for the variance of a normal(μ, σ^2) distribution based on the statistic T_n , where the sample size, n, is 20.
- 9. Let X_1, X_2, \ldots, X_n be a random sample from a distribution with unknown expectation, μ , and unknown variance, σ^2 . Define the statistic

$$T_n = \sum_{i=1}^n (X_i - \overline{X}_n)^2,$$

where \overline{X}_n denotes the sample mean.

(a) Starting with

$$(X_i - \mu)^2 = [(X_i - \overline{X}_n) + (\overline{X}_n - \mu)]^2$$

where \overline{X}_n denotes the sample mean, derive the identity

$$\sum_{i=1}^{n} (X_i - \mu)^2 = T_n + n(\overline{X}_n - \mu)^2.$$
(1)

(b) Take expectations on both sides of equation (1) to derive a formula for $E(T_n)$ in terms of σ^2 . Is T_n an unbiased estimator for σ^2 ?