Solutions to Review Problems for Exam \#1

1. Let X and Y be independent normal $(0,1)$ random variables and define

$$
W=\frac{(X-Y)^{2}}{2}
$$

Give the distribution of W.
Suggestion: First, determine the distribution of $X-Y$.
Solution: Since X and Y are independent, it follows that

$$
\begin{aligned}
M_{X-Y}(t) & =M_{X}(t) \cdot M_{Y}(-t) \\
& =e^{t^{2} / 2} \cdot e^{(-t)^{2} / 2} \\
& =e^{2 t^{2} / 2},
\end{aligned}
$$

which is the mgf of a normal $(0,2)$ distribution. Thus, $X-Y$ has a normal distribution with mean 0 and variance 2 . It then follows that

$$
\frac{X-Y}{\sqrt{2}} \sim \operatorname{normal}(0,1)
$$

and therefore

$$
\frac{(X-Y)^{2}}{2} \sim \chi^{2}(1)
$$

Hence, W has a χ^{2} distribution with one degree of freedom.
2. Let X denote a random variable with $\mathrm{mgf} M_{X}(t)$ defined on some interval around 0 . Put $S(t)=\ln \left(M_{X}(t)\right)$ and prove that

$$
S^{\prime}(0)=E(X) \quad \text { and } \quad S^{\prime \prime}(0)=\operatorname{var}(X)
$$

Solution: Differentiating with respect to t we obtain

$$
S^{\prime}(t)=\frac{1}{M_{X}(t)} M_{x}^{\prime}(t)
$$

from which we get that

$$
S^{\prime}(0)=\frac{1}{M_{X}(0)} M_{X}^{\prime}(0)=E(X)
$$

Differentiating one more time with respect to t we obtain

$$
S^{\prime \prime}(t)=\frac{M_{X}(t) M_{X}^{\prime \prime}(t)-M_{X}^{\prime}(t) M_{X}^{\prime}(t)}{\left[M_{X}(t)\right]^{2}} .
$$

Consequently,

$$
S^{\prime \prime}(0)=M_{X}(0) M_{X}^{\prime \prime}(0)-\left[M_{X}^{\prime}(0)\right]^{2}=E\left(X^{2}\right)-[E(X)]^{2}=\operatorname{var}(X)
$$

3. A median of a distribution of a random variable, X, is a value, m, such that

$$
\mathrm{P}(X \leqslant m) \geqslant \frac{1}{2} \quad \text { and } \quad \mathrm{P}(X \geqslant m) \geqslant \frac{1}{2} .
$$

(a) Prove that if X is continuous with pdf f_{X}, then a median m satisfies

$$
\int_{-\infty}^{m} f_{X}(x) \mathrm{d} x=\int_{m}^{+\infty} f_{X}(x) \mathrm{d} x=\frac{1}{2}
$$

Solution: Note the

$$
\mathrm{P}(X \leqslant m)=\int_{-\infty}^{m} f_{X}(x) \mathrm{d} x \quad \text { and } \quad \mathrm{P}(X \geqslant m)=\int_{m}^{\infty} f_{X}(x) \mathrm{d} x
$$

from which we get that

$$
\int_{-\infty}^{m} f_{X}(x) \mathrm{d} x \geqslant \frac{1}{2} \quad \text { and } \quad \int_{m}^{\infty} f_{X}(x) \mathrm{d} x \geqslant \frac{1}{2}
$$

Also,

$$
\int_{-\infty}^{m} f_{X}(x) \mathrm{d} x+\int_{m}^{\infty} f_{X}(x) \mathrm{d} x=1
$$

from which we get that

$$
\int_{-\infty}^{m} f_{X}(x) \mathrm{d} x=1-\int_{m}^{\infty} f_{X}(x) \mathrm{d} x \leqslant 1-\frac{1}{2}=\frac{1}{2}
$$

Thus,

$$
\int_{-\infty}^{m} f_{X}(x) \mathrm{d} x \geqslant \frac{1}{2} \quad \text { and } \quad \int_{-\infty}^{m} f_{X}(x) \mathrm{d} x \leqslant \frac{1}{2}
$$

which imply that

$$
\int_{-\infty}^{m} f_{X}(x) \mathrm{d} x=\frac{1}{2}
$$

Similarly,

$$
\int_{m}^{\infty} f_{X}(x) \mathrm{d} x=\frac{1}{2}
$$

(b) Let $\beta>0$ and $X \sim \operatorname{exponential}(\beta)$. Compute a median of X. Is the value you obtained the only median of the distribution? How does your answer compare with the mean of the distribution?

Solution: The pdf of X is

$$
f_{X}(x)= \begin{cases}\frac{1}{\beta} e^{-x / \beta} & \text { if } x>0 \\ 0 & \text { if } x \leqslant 0\end{cases}
$$

To find a median, m, for the distribution of X, we need to solve

$$
\int_{-\infty}^{m} f_{X}(x) \mathrm{d} x=\frac{1}{2}
$$

by the result of part (a). We then see that $m>0$ and

$$
\int_{0}^{m} \frac{1}{\beta} e^{-x / \beta} \mathrm{d} x=\frac{1}{2}
$$

from which we get that

$$
1-e^{-m / \beta}=\frac{1}{2}
$$

Solving for m we see that

$$
m=(\ln 2) \beta
$$

Thus the median of the distribution is smaller than the expected value, or mean, of the distribution in this case.
(c) Show that if X is a continuous random variable, and m is a median of the the distribution of X, then m a number which minimizes the expression

$$
h(t)=E(|X-t|) \quad \text { for } \quad t \in \mathbb{R}
$$

That is, $E(|X-m|)=\min _{t \in \mathbb{R}} E(|X-t|)$.

Solution: Write

$$
\begin{aligned}
h(t)= & \int_{-\infty}^{\infty}|x-t| f_{X}(x) \mathrm{d} x \\
= & \int_{-\infty}^{t}|x-t| f_{X}(x) \mathrm{d} x+\int_{t}^{\infty}|x-t| f_{X}(x) \mathrm{d} x \\
= & \int_{-\infty}^{t}-(x-t) f_{X}(x) \mathrm{d} x+\int_{t}^{\infty}(x-t) f_{X}(x) \mathrm{d} x \\
= & t\left(\int_{-\infty}^{t} f_{X}(x) \mathrm{d} x-\int_{t}^{\infty} f_{X}(x) \mathrm{d} x\right) \\
& \quad+\int_{t}^{\infty} x f_{X}(x) \mathrm{d} x-\int_{-\infty}^{t} x f_{X}(x) \mathrm{d} x .
\end{aligned}
$$

Taking the derivative with respect to t we obtain

$$
\begin{aligned}
h^{\prime}(t)= & \int_{-\infty}^{t} f_{X}(x) \mathrm{d} x-\int_{t}^{\infty} f_{X}(x) \mathrm{d} x+2 t f_{X}(t) \\
& -t f_{X}(t)-t f_{X}(t) \\
= & \int_{-\infty}^{t} f_{X}(x) \mathrm{d} x-\int_{t}^{\infty} f_{X}(x) \mathrm{d} x
\end{aligned}
$$

where we have used the product rule and the Fundamental Theorem of Calculus. Similarly,

$$
h^{\prime \prime}(t)=2 f_{X}(t) \geqslant 0, \quad \text { for all } t \in \mathbb{R}
$$

It then follows that a critical point of h is a minimizer of h and satisfies

$$
\int_{-\infty}^{t} f_{X}(x) \mathrm{d} x-\int_{t}^{\infty} f_{X}(x) \mathrm{d} x=0
$$

or

$$
\int_{-\infty}^{t} f_{X}(x) \mathrm{d} x=\int_{t}^{\infty} f_{X}(x) \mathrm{d} x
$$

which is the definition of a median for the distribution of X. Hence, $E(|X-t|)$ is minimized when $t=m$.
4. Give a random variable, X, of expected value μ and variance σ^{2}, the skewness of the distribution of X, denoted $\operatorname{Skew}(X)$, is defined to be

$$
\operatorname{Skew}(X)=\frac{E(X-\mu)^{3}}{\sigma^{3}}
$$

Observe that

$$
\begin{aligned}
E(X-\mu)^{3} & =E\left[X^{3}-3 \mu X^{2}+3 \mu^{2} X-\mu^{3}\right] \\
& =E\left(X^{3}\right)-3 \mu E\left(X^{2}\right)+3 \mu^{2} E(X)-\mu^{3} \\
& =E\left(X^{3}\right)-3 \mu E\left(X^{2}\right)+2 \mu^{3} .
\end{aligned}
$$

Thus, using $\operatorname{var}(X)=E\left(X^{2}\right)-[E(X)]^{2}$, we get that $E\left(X^{2}\right)=\sigma^{2}+\mu^{2}$ so that

$$
E(X-\mu)^{3}=E\left(X^{3}\right)-3 \mu\left(\sigma^{2}+\mu^{2}\right)+2 \mu^{3}
$$

or

$$
\begin{equation*}
E(X-\mu)^{3}=E\left(X^{3}\right)-3 \mu \sigma^{2}-\mu^{3} . \tag{1}
\end{equation*}
$$

We will use this equation to evaluate skewness in parts (a) and (b).
(a) Let $\beta>0$ and $X \sim \operatorname{exponential}(\beta)$. Compute the skewness of X.

Solution: According to the formula in (1) we need to compute the third moment of $X \sim \operatorname{exponential}(\beta)$. We can do this by looking up the mgf of X :

$$
M_{X}(t)=\frac{1}{1-\beta t} \quad \text { for } \quad t<\frac{1}{\beta}
$$

Differentiating with respect to t we have that

$$
\begin{aligned}
& M_{x}^{\prime}(t)=\frac{\beta}{(1-\beta t)^{2}}, \\
& M_{x}^{\prime \prime}(t)=\frac{2 \beta^{2}}{(1-\beta t)^{3}},
\end{aligned}
$$

and

$$
M_{X}^{\prime \prime \prime}(t)=\frac{6 \beta^{3}}{(1-\beta t)^{4}}
$$

for $t<\frac{1}{\beta}$. We then have that the third moment of X is

$$
E\left(X^{3}\right)=M_{x}^{\prime \prime \prime}(0)=6 \beta^{3}
$$

Consequently, using (1) we have that

$$
E(X-\mu)^{3}=2 \beta^{3}
$$

since $\mu=\beta$ and $\sigma^{2}=\beta^{2}$. We therefore have that the skewness of $X \sim \operatorname{exponential}(\beta)$ is

$$
\operatorname{Skew}(X)=\frac{E(X-\mu)^{3}}{\sigma^{3}}=\frac{2 \beta^{3}}{\beta^{3}}=2
$$

(b) Let $Z \sim \operatorname{normal}(0,1)$. Compute the skewness of Z.

Solution: The moment generating function of Z is $M_{Z}(t)=e^{t^{2} / 2}$ and, therefore, the moments of Z are

$$
\begin{gathered}
E(Z)=0 \\
E\left(Z^{2}\right)=1
\end{gathered}
$$

and

$$
E\left(Z^{3}\right)=0
$$

since

$$
M_{z}^{\prime \prime \prime}(t)=t\left(3+t^{2}\right) e^{t^{2} / 2} \quad \text { for all } t \in \mathbb{R}
$$

it then follows that $E(Z-\mu)^{3}=0$, since $\mu=0$ in this case. Consequently, the skewness of $Z \sim \operatorname{normal}(0,1)$ is

$$
\operatorname{Skew}(Z)=\frac{E(Z-\mu)^{3}}{\sigma^{3}}=0
$$

5. Let X and Y be independent, normal $\left(0, \sigma^{2}\right)$ random variables, and define

$$
U=X^{2}+Y^{2} \quad \text { and } \quad V=\frac{X}{\sqrt{U}}
$$

(a) Find the joint pdf, $f_{(U, V)}$, of U and V.

Solution: First we compute the joint cdf of U and V,

$$
F_{(U, V)}(u, v)=\mathrm{P}(U \leqslant u, V \leqslant v) \text { for } u>0 \text { and }-1<v<1,
$$

or

$$
\begin{aligned}
F_{(U, V)}(u, v) & =\mathrm{P}\left(X^{2}+Y^{2} \leqslant u, X / \sqrt{X^{2}+Y^{2}} \leqslant v\right) \\
& =\iint_{R_{u, v}} f_{(X, Y)}(x, y) \mathrm{d} x \mathrm{~d} y
\end{aligned}
$$

where the joint pdf of X and Y is

$$
f_{(X, Y)}(x, y)=\frac{1}{2 \pi \sigma^{2}} e^{-\left(x^{+} y^{2}\right) / 2 \sigma^{2}} \quad \text { for } \quad(x, y) \in \mathbb{R}^{2}
$$

since X and Y are independent normal $\left(0, \sigma^{2}\right)$ random variables, and $R_{u, v}$ is the region in the $x y$-plane defined by

$$
x^{2}+y^{2} \leqslant u \quad \text { and } \quad x \leqslant v \sqrt{x^{2}+y^{2}}
$$

for $u>0$ and $-1<v<1$.
Next, make the change of variables

$$
r=\sqrt{x^{2}+y^{2}} \quad \text { and } \quad w=\frac{x}{\sqrt{x^{2}+y^{2}}}
$$

We then have that

$$
x=r w \quad \text { and } \quad x^{2}+y^{2}=r^{2}
$$

Solving for y in the previous two equations, we see that we have two possibilities

$$
y=r \sqrt{1-w^{2}} \quad \text { or } \quad y=-r \sqrt{1-w^{2}}
$$

Thus, the region $R_{u, v}$ is divided into two disjoint regions $R_{u, v}^{+}$and $R_{u, v}^{-}$corresponding to $y>0$ and $y<0$, respectively. We then have that

$$
F_{(U, V)}(u, v)=\iint_{R_{u, v}^{+}} f_{(X, Y)}(x, y) \mathrm{d} x \mathrm{~d} y+\iint_{R_{u, v}^{-}} f_{(X, Y)}(x, y) \mathrm{d} x \mathrm{~d} y
$$

We apply the change of variables formula to each integral separately. For the integral over $R_{u, v}^{+}$we obtain

$$
\iint_{R_{u, v}^{+}} f_{(X, Y)}(x, y) \mathrm{d} x \mathrm{~d} y=\int_{-1}^{v} \int_{0}^{\sqrt{u}} \frac{1}{2 \pi \sigma^{2}} e^{-r^{2} / 2 \sigma^{2}}\left|\frac{\partial(x, y)}{\partial(r, w)}\right| \mathrm{d} r \mathrm{~d} w
$$

where

$$
\begin{aligned}
\frac{\partial(x, y)}{\partial(r, w)} & =\operatorname{det}\left(\begin{array}{cc}
w & r \\
\sqrt{1-w^{2}} & \frac{-w r}{\sqrt{1-w^{2}}}
\end{array}\right) \\
& =-\frac{r}{\sqrt{1-w^{2}}}
\end{aligned}
$$

It then follows that

$$
\iint_{R_{u, v}^{+}} f_{(X, Y)}(x, y) \mathrm{d} x \mathrm{~d} y=\int_{-1}^{v} \int_{0}^{\sqrt{u}} \frac{1}{2 \pi \sigma^{2}} \frac{r e^{-r^{2} / 2 \sigma^{2}}}{\sqrt{1-w^{2}}} \mathrm{~d} r \mathrm{~d} w .
$$

A similar calculation for $R_{u, v}^{-}$shows that

$$
\iint_{R_{u, v}^{-}} f_{(X, Y)}(x, y) \mathrm{d} x \mathrm{~d} y=\int_{-1}^{v} \int_{0}^{\sqrt{u}} \frac{1}{2 \pi \sigma^{2}} \frac{r e^{-r^{2} / 2 \sigma^{2}}}{\sqrt{1-w^{2}}} \mathrm{~d} r \mathrm{~d} w .
$$

We then have that

$$
\begin{aligned}
F_{(U, V)}(u, v) & =\int_{-1}^{v} \int_{0}^{\sqrt{u}} \frac{1}{\pi \sigma^{2}} \frac{r e^{-r^{2} / 2 \sigma^{2}}}{\sqrt{1-w^{2}}} \mathrm{~d} r \mathrm{~d} w \\
& =\int_{-1}^{v} \frac{1}{\pi} \frac{1}{\sqrt{1-w^{2}}} \mathrm{~d} w \int_{0}^{\sqrt{u}} \frac{1}{\sigma^{2}} r e^{-r^{2} / 2 \sigma^{2}} \mathrm{~d} r .
\end{aligned}
$$

Taking partial derivatives with respect to v and w we then obtain the pfd

$$
f_{(U, V)}(u, v)=\frac{1}{\pi} \frac{1}{\sqrt{1-v^{2}}} \cdot \frac{1}{\sigma^{2}} \sqrt{u} e^{-u / 2 \sigma^{2}} \cdot \frac{1}{2 \sqrt{u}}
$$

where we have used the Fundamental Theorem of Calculus and the Chain Rule. Therefore, the joint pdf for U and V is

$$
\begin{equation*}
f_{(U, V)}(u, v)=\frac{1}{\pi} \frac{1}{\sqrt{1-v^{2}}} \cdot \frac{1}{2 \sigma^{2}} e^{-u / 2 \sigma^{2}} \tag{2}
\end{equation*}
$$

for $u>0$ and $-1<v<1$, and 0 elsewhere.
(b) Show that U and V are independent random variables.

Solution: Since the joint pdf of U and V in (2) splits into the product of

$$
f_{U}(u)= \begin{cases}\frac{1}{2 \sigma^{2}} e^{-u / 2 \sigma^{2}} & \text { if } u>0 \\ 0 & \text { if } u \leqslant 0\end{cases}
$$

and

$$
f_{V}(v)= \begin{cases}\frac{1}{\pi} \frac{1}{\sqrt{1-v^{2}}} & \text { if }-1<v<1 \\ 0 & \text { otherwise }\end{cases}
$$

we see that U and V are independent random variables. Observe that $U \sim \operatorname{exponential}\left(2 \sigma^{2}\right)$.
6. Let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample from a distribution with pdf f_{X}, and let \bar{X}_{n} denote the sample mean. Prove that the pdf of the sample mean satisfies

$$
f_{\bar{X}_{n}}(t)=n f_{Y}(n t), \quad \text { for all } t \in \mathbb{R}
$$

where $Y=\sum_{i=1}^{n} X_{i}$.
Solution: First, compute the cdf

$$
\begin{aligned}
F_{\bar{X}_{n}}(t) & =\mathrm{P}\left(\bar{X}_{n} \leqslant t\right) \\
& =\mathrm{P}(Y \leqslant n t) \\
& =F_{Y}(n t),
\end{aligned}
$$

for $t \in \mathbb{R}$. Differentiate with respect to t to obtain the result.
7. Let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample from a $\operatorname{Gamma}(2, \theta)$ distribution, where θ is an unknown parameter. Define $Y=\sum_{i=1}^{n} X_{i}$.
(a) Find the distribution of Y and determine c so that the statistic $T=c Y$ is an unbiased estimator for θ.

Solution: Compute the mgf of Y to get

$$
M_{Y}(t)=\left(M_{X_{1}}(t)\right)^{n}
$$

where

$$
M_{X_{1}}(t)=\left(\frac{1}{1-\theta t}\right)^{2} \quad \text { for } \quad t<\frac{1}{\theta}
$$

Thus,

$$
\begin{equation*}
M_{Y}(t)=\left(\frac{1}{1-\theta t}\right)^{2 n} \quad \text { for } t<\frac{1}{\theta} \tag{3}
\end{equation*}
$$

which is the mgf of a $\operatorname{Gamma}(2 n, \theta)$. Thus, $Y \sim \operatorname{Gamma}(2 n, \theta)$. We then have that

$$
E(Y)=2 n \theta
$$

Consequently,

$$
E\left(\frac{Y}{2 n}\right)=\theta
$$

It then follows that $T=\frac{1}{2 n} Y$ is an unbiased estimator for θ.
(b) If $n=5$, show that

$$
\mathrm{P}\left(9.59<\frac{2 Y}{\theta}<34.2\right) \approx 0.95 .
$$

Solution: Let $W=\frac{2 Y}{\theta}$. It then follows from (3) that

$$
M_{W}(t)=\left(\frac{1}{1-2 t}\right)^{2 n} \quad \text { for } t<\frac{1}{2}
$$

which is the mgf for a $\chi^{2}(4 n)$ distribution. It then follows that W has a χ^{2} distribution with $4 n$ degrees of freedom. For the case of $n=5$, we have that $W \sim \chi^{2}(20)$. Now, for $c<d$, we have that

$$
\begin{aligned}
\mathrm{P}\left(c<\frac{2 Y}{\theta}<d\right) & =\mathrm{P}(c<W<d) \\
& =F_{W}(d)-F_{W}(c),
\end{aligned}
$$

where we have used the fact that W is a continuous random variable. If we want to construct a 95% confidence interval for θ, we need c and d such that

$$
\mathrm{P}\left(c<\frac{2 Y}{\theta}<d\right)=0.95
$$

or

$$
F_{W}(d)-F_{W}(c)=0.95 .
$$

We can achieve this by finding c and d such that

$$
F_{W}(d)=0.975 \quad \text { and } \quad F_{W}(c)=0.025
$$

From a table of χ^{2} probabilities, or using MS Excel or R, we obtain that

$$
c=F_{w}^{-1}(0.025) \approx 9.59 \text { and } d=F_{w}^{-1}(0.975) \approx 34.2 .
$$

we therefore have that

$$
\mathrm{P}\left(9.59<\frac{2 Y}{\theta}<34.2\right) \approx 0.95,
$$

which was to be shown.
(c) Use Part (b) to show that if a sample of size $n=5$ is collected from a $\operatorname{Gamma}(2, \theta)$ distribution, and the sum of the values of the sample is y, then the interval

$$
\left(\frac{2 y}{34.2}, \frac{2 y}{9.59}\right)
$$

is a 95% confidence interval for θ.
Solution: Using the result in part be we obtain that

$$
\mathrm{P}\left(\frac{1}{34.2}<\frac{\theta}{2 Y}<\frac{1}{9.95}\right) \approx 0.95 .
$$

Consequently,

$$
\mathrm{P}\left(\frac{2 Y}{34.2}<\theta<\frac{2 Y}{9.95}\right) \approx 0.95,
$$

and therefore

$$
\left(\frac{2 Y}{34.2}, \frac{2 Y}{9.95}\right)
$$

defines a 95% confidence interval for θ.
(d) Suppose the values in a random sample of size $n=5$ from a $\operatorname{Gamma}(2, \theta)$ distribution are:

$$
\begin{array}{lllll}
44.8079 & 1.5215 & 12.1929 & 12.5734 & 43.2305
\end{array}
$$

Use the data to obtain a point estimate for θ and a 95% confidence interval for θ.
Give an interpretation of your result.

Solution: In this case the value of Y is the sum of the data values, or $y=114.3262$. Using the result of part (c), a 95% confidence interval for θ is $(6.69,23.0)$. This means that if we collect many samples of size $n=5$ and compute the interval in the manner prescribed in part (c), then, on average, 95% of those intervals will capture the true parameter θ.
8. Let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample from a $\operatorname{normal}\left(\mu, \sigma^{2}\right)$ distribution and define the statistic

$$
T_{n}=\sum_{i=1}^{n}\left(X_{i}-\bar{X}_{n}\right)^{2}
$$

where \bar{X}_{n} denotes the sample mean. We will show later in this course that $\frac{1}{\sigma^{2}} T_{n}$ has a χ^{2} distribution with $n-1$ degrees of freedom.
(a) Explain how you would use knowledge of the distribution of $\frac{1}{\sigma^{2}} T_{n}$ to obtain a $100(1-\alpha) \%$ confidence interval for the variance σ^{2} of a $\operatorname{normal}\left(\mu, \sigma^{2}\right)$ distribution based on a random sample of size n from that distribution.

Solution: Let $Y=\frac{1}{\sigma^{2}} T_{n}$. Given that $Y \sim \chi^{2}(n-1)$, where n is known, we can find c and d so that

$$
F_{Y}(c)=\frac{\alpha}{2} \quad \text { and } \quad F_{Y}(d)=1-\frac{\alpha}{2} .
$$

It then follows that

$$
\mathrm{P}(c<Y<d)=F_{Y}(d)-F_{Y}(c)=1-\alpha,
$$

where we have used the fact that Y is a continuous random variable. It then follows that

$$
\mathrm{P}\left(c<\frac{1}{\sigma^{2}} T_{n}<d\right)=1-\alpha
$$

from which we get that

$$
\mathrm{P}\left(\frac{1}{d}<\frac{\sigma^{2}}{T_{n}}<\frac{1}{c}\right)=1-\alpha
$$

or

$$
\mathrm{P}\left(\frac{1}{d} T_{n}<\sigma^{2}<\frac{1}{c} T_{n}\right)=1-\alpha .
$$

Thus,

$$
\left(\frac{1}{d} T_{n}, \frac{1}{c} T_{n}\right)
$$

is a $100(1-\alpha) \%$ confidence interval for the variance σ^{2}.
(b) Give a 90% confidence interval for the variance of a normal $\left(\mu, \sigma^{2}\right)$ distribution based on the statistic T_{n}, where the sample size, n, is 20 .

Solution: Here, $\alpha=0.1$ and $Y \sim \chi^{2}(19)$. Therefore,

$$
c=F_{Y}^{-1}(0.05)=8.91 \quad \text { and } \quad d=F_{Y}^{-1}(0.95)=30.1
$$

we then have that a 90% confidence interval for the variance in this case is

$$
\left(\frac{1}{30.1} T_{n}, \frac{1}{8.91} T_{n}\right)
$$

9. Let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample from a distribution with unknown expectation, μ, and unknown variance, σ^{2}. Define the statistic

$$
T_{n}=\sum_{i=1}^{n}\left(X_{i}-\bar{X}_{n}\right)^{2}
$$

where \bar{X}_{n} denotes the sample mean.
(a) Starting with

$$
\left(X_{i}-\mu\right)^{2}=\left[\left(X_{i}-\bar{X}_{n}\right)+\left(\bar{X}_{n}-\mu\right)\right]^{2},
$$

where \bar{X}_{n} denotes the sample mean, derive the identity

$$
\begin{equation*}
\sum_{i=1}^{n}\left(X_{i}-\mu\right)^{2}=T_{n}+n\left(\bar{X}_{n}-\mu\right)^{2} \tag{4}
\end{equation*}
$$

Solution: Compute

$$
\left(X_{i}-\mu\right)^{2}=\left(X_{i}-\bar{X}_{n}\right)^{2}+2\left(\bar{X}_{n}-\mu\right)\left(X_{i}-\bar{X}_{n}\right)+\left(\bar{X}_{n}-\mu\right)^{2}
$$

then add

$$
\begin{gathered}
\sum_{i=1}^{n}\left(X_{i}-\mu\right)^{2}=\sum_{i=1}^{n}\left(X_{i}-\bar{X}_{n}\right)^{2}+2\left(\bar{X}_{n}-\mu\right) \sum_{i=1}^{n}\left(X_{i}-\bar{X}_{n}\right) \\
+\sum_{i=1}^{n}\left(\bar{X}_{n}-\mu\right)^{2}
\end{gathered}
$$

where

$$
\sum_{i=1}^{n}\left(X_{i}-\bar{X}_{n}\right)=\sum_{i=1}^{n} X_{i}-\sum_{i=1}^{n} \bar{X}_{n}=n \bar{X}_{n}-n \bar{X}_{n}=0
$$

and

$$
\sum_{i=1}^{n}\left(\bar{X}_{n}-\mu\right)^{2}=n\left(\bar{X}_{n}-\mu\right)^{2}
$$

Thus,

$$
\sum_{i=1}^{n}\left(X_{i}-\mu\right)^{2}=\sum_{i=1}^{n}\left(X_{i}-\bar{X}_{n}\right)^{2}+n\left(\bar{X}_{n}-\mu\right)^{2}
$$

which is (4).
(b) Take expectations on both sides of equation (4) to derive a formula for $E\left(T_{n}\right)$ in terms of σ^{2}. Is T_{n} an unbiased estimator for σ^{2} ?

Solution: Taking expectation on both sided of (4) we have

$$
\sum_{i=1}^{n} E\left(X_{i}-\mu\right)^{2}=E\left(T_{n}\right)+n E\left(\bar{X}_{n}-\mu\right)^{2}
$$

where we have used the linearity of the expectation operator, E. Thus,

$$
\sum_{i=1}^{n} \operatorname{var}\left(X_{i}\right)=E\left(T_{n}\right)+n \operatorname{var}\left(\bar{X}_{n}\right)
$$

where

$$
\operatorname{var}\left(X_{i}\right)=\sigma^{2} \quad \text { for all } i=1,2, \ldots, n
$$

and

$$
\operatorname{var}\left(\bar{X}_{n}\right)=\frac{\sigma^{2}}{n}
$$

Consequently,

$$
n \sigma^{2}=E\left(T_{n}\right)+n \frac{\sigma^{2}}{n}
$$

from which we get that

$$
E\left(T_{n}\right)=(n-1) \sigma^{2} .
$$

Hence, T_{n} is not an unbiased estimator for σ^{2}.

