Solutions to Exam \#1

1. Define the following terms:
(a) Random sample

Answer: A random sample of size n from a given distribution is a set of independent random variables, $X_{1}, X_{2}, \ldots, X_{n}$, which have the same distribution as that from which sampling is being done.
(b) Statistic

Answer: A statistic is a quantity computed from the values of a random sample; thus, a statistic random variable defined in terms of a random sample, $X_{1}, X_{2}, \ldots, X_{n}$.
(c) Sampling distribution

Answer: The distribution of a statistic is called the sampling distribution of the statistic.
(d) Unbiased estimator

Answer: Let T_{n} denote a statistic based on a random sample of size n from a distribution with parameter $\theta . T_{n}$ is said to be an unbiased estimator for θ if

$$
E\left(T_{n}\right)=\theta
$$

(e) Consistent estimator

Answer: Let T_{n} denote a statistic based on a random sample of size n from a distribution with parameter $\theta . T_{n}$ is said to be a consistent estimator for θ if T_{n} converges to θ in probability as $n \rightarrow \infty$; that is, for any $\varepsilon>0$,

$$
\lim _{n \rightarrow \infty} \mathrm{P}\left(\left|T_{n}-\theta\right|<\varepsilon\right)=1
$$

2. Let X and Y be random variables with $X \sim \chi^{2}(1)$ and $Y \sim \chi^{2}(n)$ for $n>1$, and define

$$
W=Y-X
$$

Assuming that X and W are independent, determine the distribution of W.
Suggestion: Write $Y=X+W$ and compute the mgf of Y in terms of the mgfs of X and W.

Solution: Assume that X and W are independent and write

$$
Y=W+X
$$

Then,

$$
M_{Y}(t)=M_{W}(t) \cdot M_{X}(t),
$$

by the independence assumption. Consequently,

$$
\begin{aligned}
M_{W}(t) & =\frac{M_{Y}(t)}{M_{X}(t)} \\
& =\frac{\left(\frac{1}{1-2 t}\right)^{n / 2}}{\left(\frac{1}{1-2 t}\right)^{1 / 2}} \\
& =\left(\frac{1}{1-2 t}\right)^{(n-1) / 2}
\end{aligned}
$$

which is the mgf for a $\chi^{2}(n-1)$ random variable. Therefore, W has a χ^{2} distribution with $n-1$ degrees of freedom.
3. Let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample from a $\operatorname{Poisson}(\lambda)$ distribution and define the statistic $Y=\sum_{i=1}^{n} X_{i}$.
(a) Derive the sampling distribution for Y. Justify your answer.

Solution: Compute the mgf of $Y, M_{Y}(t)=E\left(e^{t Y}\right)$, to get that

$$
M_{Y}(t)=M_{X_{1}}(t) \cdot M_{X_{2}}(t) \cdots M_{X_{n}}(t),
$$

where we have used the independence assumption. Thus, since the random variables $X_{1}, X_{2}, \ldots, X_{n}$ are identically distributed, it follows that

$$
M_{Y}(t)=\left(e^{\lambda\left(e^{t}-1\right)}\right)^{n}=e^{n \lambda\left(e^{t}-1\right)}
$$

which is the mgf of a Poisson $(n \lambda)$ random variable. It follows that Y is a Poisson random variable with parameter $n \lambda$.
(b) Find a value of c for that $T=c Y$ is an unbiased estimator for λ. Justify your answer.

Solution: Since $Y \sim \operatorname{Poisson}(n \lambda)$, by part (a), it follows that $E(Y)=n \lambda$. Consequently,

$$
E\left(\frac{1}{n} Y\right)=\lambda
$$

which shows that $T=\frac{1}{n} Y$ is an unbiased estimator for λ.
4. Let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample from a $\operatorname{normal}\left(\mu, \sigma^{2}\right)$ distribution and define the statistic

$$
T_{n}=\sum_{i=1}^{n}\left(X_{i}-\bar{X}_{n}\right)^{2},
$$

where \bar{X}_{n} denotes the sample mean. We will show later in this course that $\frac{1}{\sigma^{2}} T_{n}$ has a χ^{2} distribution with $n-1$ degrees of freedom.
(a) Explain how you would use knowledge of the distribution of $\frac{1}{\sigma^{2}} T_{n}$ to obtain a $100(1-\alpha) \%$ confidence interval for the variance σ^{2} of a normal $\left(\mu, \sigma^{2}\right)$ distribution based on a random sample of size n from that distribution.

Solution: Let $Y=\frac{1}{\sigma^{2}} T_{n}$. Given that $Y \sim \chi^{2}(n-1)$, where n is known, we can find c and d so that

$$
F_{Y}(c)=\frac{\alpha}{2} \quad \text { and } \quad F_{Y}(d)=1-\frac{\alpha}{2} .
$$

It then follows that

$$
\mathrm{P}(c<Y<d)=F_{Y}(d)-F_{Y}(c)=1-\alpha,
$$

where we have used the fact that Y is a continuous random variable. It then follows that

$$
\mathrm{P}\left(c<\frac{1}{\sigma^{2}} T_{n}<d\right)=1-\alpha
$$

from which we get that

$$
\mathrm{P}\left(\frac{1}{d}<\frac{\sigma^{2}}{T_{n}}<\frac{1}{c}\right)=1-\alpha
$$

or

$$
\mathrm{P}\left(\frac{1}{d} T_{n}<\sigma^{2}<\frac{1}{c} T_{n}\right)=1-\alpha .
$$

Thus,

$$
\left(\frac{1}{d} T_{n}, \frac{1}{c} T_{n}\right)
$$

is a $100(1-\alpha) \%$ confidence interval for the variance σ^{2}.
(b) Give a 95% confidence interval for the variance of a $\operatorname{normal}\left(\mu, \sigma^{2}\right)$ distribution based on the statistic T_{n}, where the sample size, n, is 17 .

Solution: Here, $\alpha=0.05$ and $Y \sim \chi^{2}(16)$. Therefore,

$$
c=F_{Y}^{-1}(0.025)=6.91 \quad \text { and } \quad d=F_{Y}^{-1}(0.975)=28.8
$$

we then have that a 95% confidence interval for the variance in this case is

$$
\begin{equation*}
\left(\frac{1}{28.8} T_{n}, \frac{1}{6.91} T_{n}\right) \tag{1}
\end{equation*}
$$

(c) Assume that the counts of popcorn kernels in a $1 / 4$ cup follow a normal distribution with parameters μ and σ^{2}, which are unknown. Seventeen students in this class measured a $1 / 4$ cup of kernels and counted the kernels in the the container. The value of T_{n} for this particular sample of size $n=17$ is about 21,900 . Use this information to provide a 95% confidence interval for the variance, σ^{2}. Give an interpretation of your result.

Solution: Using the result of the previous part in (1) we get that

$$
\left(\frac{21,900}{28.8}, \frac{21,900}{6.91}\right)
$$

or about

$$
(760,3560),
$$

is a 95% confidence interval for the variance of the number kernels in $1 / 4$ cup of popcorn. This interval might or might not contain the true variance, but we are confident that, on average, 95% of the intervals given by the formula in (1) computed from data in samples of size 17 will contain the true variance.

