Solutions to Exam #1

- 1. Define the following terms:
 - (a) Random sample

Answer: A random sample of size n from a given distribution is a set of independent random variables, X_1, X_2, \ldots, X_n , which have the same distribution as that from which sampling is being done.

(b) Statistic

Answer: A statistic is a quantity computed from the values of a random sample; thus, a statistic random variable defined in terms of a random sample, X_1, X_2, \ldots, X_n .

(c) Sampling distribution

Answer: The distribution of a statistic is called the sampling distribution of the statistic. \Box

(d) Unbiased estimator

Answer: Let T_n denote a statistic based on a random sample of size n from a distribution with parameter θ . T_n is said to be an unbiased estimator for θ if

$$E(T_n) = \theta.$$

(e) Consistent estimator

Answer: Let T_n denote a statistic based on a random sample of size n from a distribution with parameter θ . T_n is said to be a consistent estimator for θ if T_n converges to θ in probability as $n \to \infty$; that is, for any $\varepsilon > 0$,

$$\lim_{n \to \infty} \mathbf{P}(|T_n - \theta| < \varepsilon) = 1.$$

Math 152. Rumbos

2. Let X and Y be random variables with $X \sim \chi^2(1)$ and $Y \sim \chi^2(n)$ for n > 1, and define

W = Y - X.

Assuming that X and W are independent, determine the distribution of W.

Suggestion: Write Y = X + W and compute the mgf of Y in terms of the mgfs of X and W.

Solution: Assume that X and W are independent and write

$$Y = W + X.$$

Then,

$$M_{Y}(t) = M_{W}(t) \cdot M_{X}(t),$$

by the independence assumption. Consequently,

$$\begin{split} M_{W}(t) &= \frac{M_{Y}(t)}{M_{X}(t)} \\ &= \frac{\left(\frac{1}{1-2t}\right)^{n/2}}{\left(\frac{1}{1-2t}\right)^{1/2}} \\ &= \left(\frac{1}{1-2t}\right)^{(n-1)/2} \end{split}$$

which is the mgf for a $\chi^2(n-1)$ random variable. Therefore, W has a χ^2 distribution with n-1 degrees of freedom.

,

- 3. Let X_1, X_2, \ldots, X_n be a random sample from a Poisson(λ) distribution and define the statistic $Y = \sum_{i=1}^n X_i$.
 - (a) Derive the sampling distribution for Y. Justify your answer. **Solution:** Compute the mgf of Y, $M_Y(t) = E(e^{tY})$, to get that

$$M_{Y}(t) = M_{X_{1}}(t) \cdot M_{X_{2}}(t) \cdots M_{X_{n}}(t)$$

where we have used the independence assumption. Thus, since the random variables X_1, X_2, \ldots, X_n are identically distributed, it follows that

$$M_{\scriptscriptstyle Y}(t) = \left(e^{\lambda(e^t-1)}\right)^n = e^{n\lambda(e^t-1)},$$

which is the mgf of a Poisson $(n\lambda)$ random variable. It follows that Y is a Poisson random variable with parameter $n\lambda$.

(b) Find a value of c for that T = cY is an unbiased estimator for λ . Justify your answer.

Solution: Since $Y \sim \text{Poisson}(n\lambda)$, by part (a), it follows that $E(Y) = n\lambda$. Consequently,

$$E\left(\frac{1}{n}Y\right) = \lambda,$$

which shows that $T = \frac{1}{n}Y$ is an unbiased estimator for λ . \Box

4. Let X_1, X_2, \ldots, X_n be a random sample from a normal (μ, σ^2) distribution and define the statistic

$$T_n = \sum_{i=1}^n (X_i - \overline{X}_n)^2,$$

where \overline{X}_n denotes the sample mean. We will show later in this course that $\frac{1}{\sigma^2}T_n$ has a χ^2 distribution with n-1 degrees of freedom.

(a) Explain how you would use knowledge of the distribution of $\frac{1}{\sigma^2}T_n$ to obtain a 100(1 - α)% confidence interval for the variance σ^2 of a normal(μ, σ^2) distribution based on a random sample of size n from that distribution.

Solution: Let $Y = \frac{1}{\sigma^2}T_n$. Given that $Y \sim \chi^2(n-1)$, where *n* is known, we can find *c* and *d* so that

$$F_{_Y}(c) = \frac{\alpha}{2}$$
 and $F_{_Y}(d) = 1 - \frac{\alpha}{2}$

It then follows that

$$P(c < Y < d) = F_{Y}(d) - F_{Y}(c) = 1 - \alpha,$$

Math 152. Rumbos

Fall 2009 4

where we have used the fact that Y is a continuous random variable. It then follows that

$$P\left(c < \frac{1}{\sigma^2}T_n < d\right) = 1 - \alpha,$$

from which we get that

$$P\left(\frac{1}{d} < \frac{\sigma^2}{T_n} < \frac{1}{c}\right) = 1 - \alpha,$$

or

$$\mathbf{P}\left(\frac{1}{d}T_n < \sigma^2 < \frac{1}{c}T_n\right) = 1 - \alpha.$$

Thus,

$$\left(\frac{1}{d}T_n, \frac{1}{c}T_n\right)$$

- is a $100(1-\alpha)\%$ confidence interval for the variance σ^2 .
- (b) Give a 95% confidence interval for the variance of a normal (μ, σ^2) distribution based on the statistic T_n , where the sample size, n, is 17.

Solution: Here, $\alpha = 0.05$ and $Y \sim \chi^2(16)$. Therefore,

$$c = F_Y^{-1}(0.025) = 6.91$$
 and $d = F_Y^{-1}(0.975) = 28.8.$

we then have that a 95% confidence interval for the variance in this case is

$$\left(\frac{1}{28.8}T_n, \frac{1}{6.91}T_n\right).$$
 (1)

(c) Assume that the counts of popcorn kernels in a 1/4 cup follow a normal distribution with parameters μ and σ^2 , which are unknown. Seventeen students in this class measured a 1/4 cup of kernels and counted the kernels in the the container. The value of T_n for this particular sample of size n = 17 is about 21,900. Use this information to provide a 95% confidence interval for the variance, σ^2 . Give an interpretation of your result.

Solution: Using the result of the previous part in (1) we get that

$$\left(\frac{21,900}{28.8},\frac{21,900}{6.91}\right),\,$$

or about

(760, 3560),

is a 95% confidence interval for the variance of the number kernels in 1/4 cup of popcorn. This interval might or might not contain the true variance, but we are confident that, on average, 95% of the intervals given by the formula in (1) computed from data in samples of size 17 will contain the true variance.