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Solutions to Review Problems for Exam #3

1. Let X have a Gamma distribution with parameters � = 4 and � = � > 0.

(a) Find the Fisher information I(�).

Solution: The pdf of X is given by

f(x ∣ �) =
1

Γ(4)�4
x3 e−x/� for 0 < x <∞

and zero elsewhere, where Γ(4) = Γ(3+1) = 3! = 6. Consequently,

ln f(x ∣ �) = −4 ln � − x

�
+ 3 lnx− ln 6.

It then follows that

∂

∂�
(ln f(x ∣ �)) = −4

�
+
x

�2
,

and
∂2

∂�2
(ln f(x ∣ �)) =

4

�2
− 2x

�3
.

It then follows that the Fisher information is

I(�) = −E
(
∂2

∂�2
(ln f(x ∣ �))

)
= − 4

�2
+

2E(X)

�3
,

where E(X) = 4�. Thus,

I(�) =
4

�2
.

□

(b) Let X1, X2, . . . , Xn be a random sample from a Gamma(4, �) distribution.
Find the MLE for � and show that it is an efficient estimator.

Solution: The likelihood function in this case is

L(� ∣ x1, x2, . . . , xn) =
1

6n�4n
(x1 ⋅ x2 ⋅ ⋅ ⋅xn)3 e−y/�,

where y =
n∑
i=1

xi. We then have that

ℓ(�) = lnL(� ∣ x1, x2, . . . , xn) = −4n ln �−y
�

+3 ln(x1⋅x2 ⋅ ⋅ ⋅xn)−n ln 6.
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To find the MLE for �, we maximize the function ℓ(�). Thus, we
first computet the derivatives

ℓ′(�) = −4n

�
+
y

�2
,

and

ℓ′(�) =
4n

�2
− 2y

�3
.

Thus, �̂ =
y

4n
is a critical point of ℓ with

ℓ′(�̂) =
4n

�̂2
− 8n�̂

�̂3
= −4n

�̂2
< 0.

Thus, �̂ is the MLE for �.
Observe that

E(�̂) =
1

4n
E(Y ) =

1

4n

n∑
i=1

E(Xi) =
1

4n

n∑
i=1

4� = �.

Thus, �̂ is an unbiased estimator of �.
To see if �̂ is efficient, we compute the variance of �̂:

var(�̂) =
1

42n2
var(Y )

=
1

42n2

n∑
i=1

var(Xi)

=
1

42n2

n∑
i=1

4�2

=
�2

4n
.

Observe that

var(�̂) =
1

n(4/�2)
=

1

nI(�)
,

by the result from part (a), which is the Crámer–Rao lower bound.

Hence, �̂ is an efficient estimator of �. □
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2. Let X have a normal distribution with mean � = 0 and variance �2 = � > 0.

(a) Find the Fisher information I(�).

Solution: The pdf of X in this case is

f(x ∣ �) =
1√

2�
√
�
e−x

2/2�, for x ∈ ℝ.

We then have that

ln f(x ∣ �) = −1

2
ln � − x2

2�
− 1

2
ln(2�).

Thus,
∂

∂�
(ln f(x ∣ �)) = − 1

2�
+

x2

2�2
,

and
∂2

∂�2
(ln f(x ∣ �)) =

1

2�2
− x2

�3
.

We then have that the Fisher information is

I(�) = −E
(
∂2

∂�2
(ln f(x ∣ �))

)
= − 1

2�2
+
E(X2)

�3
,

where E(X2) = var(X) = �. Consequently,

I(�) =
1

2�2
.

□

(b) Let X1, X2, . . . , Xn be a random sample from a normal(0, �) distribution.
Find the MLE for � and show that it is an efficient estimator.

Solution: The likelihood function is

L(� ∣ x1, x2, . . . , xn) =
1

(2�)n/2 �n/2
e−

∑n
i=1 x

2
i /2�.

To find an MLE for �, we need to maximize the function

ℓ(�) = lnL(� ∣ x1, x2, . . . , xn) = −n
2

ln � − 1

2�

n∑
i=1

x2i −
n

2
ln(2�).
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over � > 0. In order to do this, we compute the derivatives

ℓ′(�) = − n

2�
+

1

2�2

n∑
i=1

x2i

and

ℓ′′(�) =
n

2�2
− 1

�3

n∑
i=1

x2i .

We then have that

�̂ =
1

n

n∑
i=1

x2i

is a critical point of ℓ with

ℓ′′(�̂) =
n

2�̂2
− 1

�̂3

n∑
i=1

x2i = − n

2�̂2
,

from which we conclude that �̂ is the MLE of �.
The expectation of �̂ is

E(�̂) =
1

n

n∑
i=1

E(X2
i ) =

1

n

n∑
i=1

var(Xi) = �,

since the Xis are iid normal(0, �) random variables. It then follows

that �̂ is an unbiased estimator.
To compute the variance of �̂,

var(�̂) =
1

n2

n∑
i=1

var(X2
i ),

observe that
1

�
X2
i has a �2(1) distribution. We then have that

var

(
1

�
X2
i

)
= 2, for i = 1, 2, . . . , n.

Consequently,

var
(
X2
i

)
= �2 var

(
1

�
X2
i

)
= 2�2, for i = 1, 2, . . . , n,
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and, therefore,

var(�̂) =
1

n2
⋅ n(2�2) =

2�2

n
.

Thus, we can write

var(�̂) =
1

n(1/2�2)
=

1

nI(�)
,

by the result from part (a). This is the Crámer–Rao lower bound.

Hence, �̂ is an efficient estimator of �. □

3. Let X1, X2, . . . , Xn denote a random sample from a uniform distribution over
the interval [0, �] for some parameter � > 0.

Show that W = 2Xn is an unbiased estimator of � and determine its efficiency.

Solution: Evaluate the expectation of W :

E(W ) = E(2Xn) = 2E(Xn) = 2 ⋅ �
2

= �.

Thus, W is unbiased. Next, compute the variance of W :

var(W ) = var(2Xn) = 4var(Xn) = 4 ⋅ �
2/12

n
=
�2

3n
.

We have seen in class that the Crámer–Rao inequality does not ap-
ply to samples from the uniform[0, �] distribution. However, we can
compare the variance of W with that of another unbiased estimator,
namely

W2 =
n+ 1

n
max{X1, X2, . . . , Xn},

whose variance is

var(W2) =
1

n(n+ 2)
�2.

Observe that n(n+ 2) > 3n for all n > 1. Consequently,

var(W2) < var(W ),

and, therefore, W is less efficient than W2. □



Math 152. Rumbos Fall 2009 6

4. Let X1, X2, . . . , Xn be a random sample from a normal(0, �) distribution. We
want to use the statistic

Y =
n∑
i=1

∣Xi∣

to estimate the standard deviation
√
�.

(a) Let W = cY for some constant c. Determine a value of c so that W is an
unbiased estimator of

√
�.

Solution: We first compute the expectation of Y :

E(Y ) =
n∑
i=1

E (∣Xi∣) ,

where, for each i = 1, 2, . . . , n,

E (∣Xi∣) =

∫ ∞
−∞
∣x∣f(x ∣ �) dx,

where

f(x ∣ �) =
1√

2�
√
�
e−x

2/2�, for x ∈ ℝ.

We then have, by the symmetry of the pdf, that

E (∣Xi∣) = 2

∫ ∞
0

x
1√

2�
√
�
e−x

2/2� dx

=
2√

2�
√
�

∫ ∞
0

x e−x
2/2� dx.

Next, make the change of variables u =
x2

2�
, so that du =

x

�
dx,

and

E (∣Xi∣) =
2
√
�√

2�

∫ ∞
0

e−u du =

√
2

�

√
�.

We then have that

E(Y ) =
n∑
i=1

E (∣Xi∣) = n ⋅
√

2

�

√
�.

Thus, setting c =
1

n
⋅
√
�

2
, we see that W = cY is an unbiased

estimator for
√
�. □
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(b) Compute the efficiency of the estimator W found in part (a).

Solution: We first compute the variance of W :

var(W ) = c2 var(Y ),

where

var(Y ) =
n∑
i=1

var (∣Xi∣) = n ⋅ var(∣X∣),

for X ∼ normal(0, �).
Thus, we need to compute var(∣X∣):

var(∣X∣) = E(X2)− [E(∣X∣)]2

= var(X)− 2

�
�

= � − 2

�
�

=

(
1− 2

�

)
�.

We then have that

var(Y ) = n ⋅
(

1− 2

�

)
�,

and, consequently,

var(W ) = c2 var(Y ) =
1

n2
⋅ �

2
⋅ n ⋅

(
1− 2

�

)
�,

or

var(W ) =
1

n

(�
2
− 1
)
�.

Next, we compute the efficiency of W ,

eff
�
(W ) =

1/nI(
√
�)

var(W )
.

In order to compute I(
√
�), we need to write the pdf of X ∼

normal(0, �) as a function of
√
�. Setting � =

√
�, we can write

f(x ∣ �) =
1√

2� �
e−x

2/2�2

, for x ∈ ℝ.
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We then obtain that

ln f(x ∣ �) = − ln� − x2

2�2
− 1

2
ln(2�),

so that
∂

∂�
ln f(x ∣ �) = − 1

�
+
x2

�3

and
∂2

∂�2
ln f(x ∣ �) =

1

�2
− 3x2

�4
.

Thus,

I(�) = −E
(
∂2

∂�2
ln f(x ∣ �)

)
= − 1

�2
+

3E(X2)

�4
,

where E(X2) = var(X) = �2. Thus,

I(�) =
2

�2
=

2

�
.

Hence,

eff
�
(W ) =

1/nI(
√
�)

var(W )

=
1/n(2/�)

var(W )

=

�

2n
1

n

(�
2
− 1
)
�

=
1

� − 2
.

□

5. Let X1, X2, . . . , Xn be a random sample from a normal(�o, �) distribution, where
�o is known and � > 0. Show that the LRT for

Ho : � = �o versus H1 : � ∕= �o



Math 152. Rumbos Fall 2009 9

may be based upon the statistic

W =
1

�o

n∑
i=1

(Xi − �o)2.

Determine the null distribution of W and give, explicitly, the rejection rule for
a level � test.

Solution: The likelihood function in this case is

L(� ∣ x1, x2, . . . , xn) =
1

(2�)n/2 �n/2
e−

∑n
i=1(xi−�o)2/2�.

We first find the MLE for �. In order to do this, we maximize the
function

ℓ(�) = lnL(� ∣ x1, x2, . . . , xn) = −n
2

ln �− 1

2�

n∑
i=1

(xi−�o)2−
n

2
ln(2�),

for � > 0. Taking the derivatives of ℓ we obtain

ℓ′(�) = − n

2�
+

1

2�2

n∑
i=1

(xi − �o)2,

and

ℓ′′(�) =
n

2�2
− 1

�3

n∑
i=1

(xi − �o)2.

Thus,

�̂ =
1

n

n∑
i=1

(xi − �o)2

is a critical point of ℓ with ℓ′′(�̂) = − n

2�̂2
< 0, and therefore it is the

MLE of �. The likelihood ratio statistic for the test of

Ho : � = �o versus H1 : � ∕= �o

is

Λ(x1, x2, . . . , xn) =
L(�o ∣ x1, . . . , xn)

L(�̂ ∣ x1, . . . , xn)
,
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where

L(� ∣ x1, x2, . . . , xn) =
1

(2�)n/2 �
n/2
o

e−
∑n
i=1(xi−�o)2/2�o

=
1

(2�)n/2 �
n/2
o

e−
n
2

�̂
�o ,

and

L(�̂ ∣ x1, x2, . . . , xn) =
1

(2�)n/2�̂n/2
e−

n
2 .

It then follows that

Λ(x1, x2, . . . , xn) = en/2

(
�̂

�o

)n/2

e−
n
2

�̂
�o ,

which we can write as

Λ(x1, x2, . . . , xn) = en/2tn/2 e−
n
2
t,

where

t =
�̂

�o
.

Thus, Λ is a function of t; more precisely,

Λ(x1, x2, . . . , xn) = g(t),

where g(t) = en/2tn/2e−tn/2 for t ⩾ 0. A sketch of the graph of g, for
the case n = 10, is shown in Figure 1 on page 11. We then see that
g(t) ⩽ 1 for all t, g(0) = 0, lim

t→∞
g(t) = 0, g(t) is strictly increasing

for t < 1, and strictly decreasing for t > 0. Thus, the LRT rejection
region

R : Λ ⩽ c, for some c ∈ (0, 1),

is equivalent to

R : t ⩽ t1 or t ⩾ t2 for some 0 < t1 < 1 < t2,

or, equivalently,

R :
�̂

�o
⩽ t1 or

�̂

�o
⩾ t2 for some 0 < t1 < 1 < t2,
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Figure 1: Sketch of graph of g(t) for 0 ⩽ t ⩽ 4

where

�̂ =
1

n

n∑
i=1

(xi − �o)2.

Thus the LRT may be based upon the statistic

W =
1

�o

n∑
i=1

(Xi − �o)2.

If the null hypothesis is true, thenX1, X2, . . . , Xn are iid normal(�o, �o)
random variables, and therefore

1

�o
(Xi − �o)2 ∼ �2(1) for i = 1, 2, . . . , n.

It then follows that, if Ho is true, then

W ∼ �2(n)

by the definition of the �2 distribution. Hence, if a = F−1
W

(�/2) and
b = F−1

W
(1− (�/2)), the the LRT which rejects Ho if

W ⩽ a or W ⩾ b,

has significance level �. □
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6. Let X1, X2, . . . , Xn be a random sample from a Gamma(4, �) distribution with
� > 0.

(a) Show that the LRT for

Ho : � = �o versus H1 : � ∕= �o

may be based upon the statistic

W =
n∑
i=1

Xi.

Determine the null distribution of 2W/�o.

Solution: The likelihood function in this case is

L(� ∣ x1, x2, . . . , xn) =
1

6n�4n
(x1 ⋅ x2 ⋅ ⋅ ⋅xn)3 e−y/�,

where y =
n∑
i=1

xi. We showed in part (b) of Problem 1 in this set

of review problems that �̂ =
y

4n
is the MLE for �. Consequently,

the likelihood ratio statistic in this case is

Λ(x1, x2, . . . , xn) =
L(�o ∣ x1, x2, . . . , xn)

L(�̂ ∣ x1, x2, . . . , xn)

= e4n

(
�̂

�o

)4n

e−4n�̂/�o ,

where we have used the fact that y = 4n�̂. Thus, setting

t =
�̂

�o
,

we see that
Λ(x1, x2, . . . , xn) = g(t),

where
g(t) = t4ne−4n(t−1).

A sketch of the graph of g for the case n = 5 is shown in Figure 2
on page 13. Thus, we see from the sketch that for any c ∈ (0, 1),
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Figure 2: Sketch of graph of g(t) for 0 ⩽ t ⩽ 4

there exist positive numbers t1 and t2 such that that t1 < 1 < t2
and

Λ ⩽ c if and only if t ⩽ t1 or t ⩾ t2.

Thus, the LRT rejects Ho iff

�̂

�o
⩽ t1 or

�̂

�o
⩾ t2 for some 0 < t1 < 1 < t2, (1)

where �̂ =
1

4n

n∑
i=1

Xi. Thus, the LRT for

Ho : � = �o versus H1 : � ∕= �o

may be based upon the statistic

W =
n∑
i=1

Xi.

In fact, we see from (1) that the rejection region for the LRT is

R :
2W

�o
⩽ 8nt1 or

2W

�o
⩾ 8nt2,
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or
R : W ⩽ c1 or W ⩾ c2,

for some positive constants, c1 and c2, with c1 < c2.
It is possible to show that, if the null hypothesis is true, then the

moment generating function of
2W

�o
is

(
1

1− 2t

)4n

,

which is the mgf of a �2 random variable with 8n degrees of free-
dom. It then follows that

2W

�o
∼ �2(8n),

if Ho is true. □

(b) For �o = 4 and n = 5, find c1 and c2 so that the test rejects Ho when
W ⩽ c1 or W ⩾ c2 has a significance level � = 0.05.

Solution: If Ho is true, then
2W

�o
∼ �2(40). We first find positive

numbers, a1 and a2, with a1 < a2, and

F
2W/�o

(a1) = 0.025 and F
2W/�o

(a2) = 0.975.

this yields
a1 ≈ 24.43 and a2 ≈ 59.34.

Setting

c1 =
a1�o

2
≈ 48.86 and c2 =

a2�o
2
≈ 118.68,

it follows that the LRT which rejects Ho if

W ⩽ c1 or W ⩾ c2

has significance level � = 0.05. □

7. Suppose that X1, X2, . . . , Xn form a random sample from a normal(0, �2) dis-
tribution. We wish to test

Ho : �2 ⩽ 2 versus H1 : �2 > 2.
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(a) Show that there exists a uniformly most powerful (UMP) test at every
significance level �.

Solution: We first consider the test of simple hypotheses

Ho : �2 = 2 versus H1 : �2 = �2
1, (2)

where �2
1 > 2.

The likelihood function for this situation is

L(�2 ∣ x1, x2, . . . , x2) =
1

(2�)n/2 �n
e−

∑n
i=1 x

2
i /2�

2

,

thus, the likelihood ratio statistic for the test of simple hypotheses
in (2) is

Λ(x1, x2, . . . , xn) =

(
�2
1

2

)n/2
e
−w

4

(
1− 1

�2/2

)
,

where we have written

w =
n∑
i=1

x2i .

Setting a =
�2
1

2
and b = 1 − 1

a
, we see that the likelihood ratio

statistic is a function of w; more precisely,

Λ(x1, x2, . . . , xn) = g(w),

where
g(w) = an/2e−bw/4.

Since �2
1 > 2, a > 1 and therefore b > 0; so that, g(w) decreases

to 0 as w increases to infinity. Thus, for any c ∈ (0, 1) we can find
a positive, w1, large enough so that g(w1) = c. Furthermore,

g(w) ⩽ c for all w ⩾ w1,

since g(w) decreases with increasing w. Thus, the LRT rejection
region for the simple hypotheses in (2) is equivalent to the region

R : W ⩾ w1.
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Observe that, if Ho in (2) is true, then the statistic
1

2
W has a

�2(n) distribution, since X1, X2, . . . , Xn are iid normal(0, 2) ran-
dom variables when Ho is true. Thus, given � ∈ (0, 1), let

w� = F−1
W/2

(1− �).

Then, the test that rejects Ho if

1

2
W ⩾ w�

has significance level �. Equivalently, the test that rejects Ho if

W ⩾ c�,

where
c� = 2w�,

has significance level �. By the Neyman–Pearson Lemma, this is
the most powerful test at level �.
Next, consider the test of simple hypotheses

Ho : �2 = �2
o versus H1 : �2 = �2

1, (3)

where �2
o ⩽ 2 and �12 > 2. Then, the likelihood ratio statistic for

this test is

Λ(x1, x2, . . . , xn) =

(
�2
1

�2
o

)n/2
e
− w

2�2o

(
1− 1

�2/�2o

)
,

Thus, since �2
1 > �2

o , we see that Λ is a decreasing function of w,
Consequently, the test that rejects Ho if

W ⩾ c�,

is the most powerful at level �. Since this is the case for all
�2
o ⩽ 2 and �2

1 > 2, this test is the uniformly most powerful test
at significance level �. □

(b) Show that the UMP test found in part (a) rejects Ho when

n∑
i=1

X2
i ⩾ c,

for some c > 0, and determine the value of c so that the significance level
of the test is � = 0.05.
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Solution: We solved the first part of this problem in part (a) for
c = c�.
To determine c� for � = 0.05 solve the equation

F
W/2

(w�) = 1− �,

where
1

2
W ∼ �2(n). Then, c� = 2w�. □

8. In a given city, it is assumed that the number of automobile accidents in a
given year follows a Poisson distribution. Suppose that it is known that, in past
years, the average number of accidents per years was 15. Suppose that this year
the number of accidents has been 10. Is it justified to claim that the rate of
accidents has dropped?

To answer this question, set up an appropriate hypothesis test. State your
assumptions clearly and justify your conclusions.

Solution: To answer this question, we will make an inference based
on a single observation, Y , where Y ∼ Poisson(�).

We will test the hypothesis

Ho : � = �o,

where �o = 15, versus the alternative

H1 : � < �o.

We use a likelihood ratio test. In order to do this, we firs note that
the likelihood function in this case is

L(� ∣ y) =
�y

y!
e−�

The maximum likelihood occurs when � = y; thus, we set �̂ = y.

To compute the likelihood statistic,

Λ(y) =
L(�o ∣ y)

sup
�<�o

L(� ∣ y)
,

We consider two cases:

(i) �̂ < �o;
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(ii) �̂ ⩾ �o.

In case (i), sup
�<�o

L(� ∣ y) = L(�̂ ∣ y), so that Λ(y) =
L(�o ∣ y)

L(�̂ ∣ y)
.

In case (ii), sup
�<�o

L(� ∣ y) = L(�o ∣ y), so that Λ(y) = 1.

We then have that

Λ(y) =

⎧⎨⎩
�yo e

−�o

�̂y e−�̂
if �̂ < �o;

1 if �̂ ⩾ �o,

which we can write in terms of t =
�̂

�o
as Λ(y) = g(t), where

g(t) =

⎧⎨⎩
1

t�ot e−�o(t−1)
if t < 1;

1 if t ⩾ 1.

Observe that the function g(t) increases strictly from e−�o to 1 for
0 < t < 1. Consequently, for any c < 1, with c > e−�o , there exists
t1 < 1 such that g(t1) = c, and

g(t) ⩽ c for all t ⩽ t1.

Consequently, the LRT rejection region

R : Λ ⩽ c,

is equivalent to

R :
�̂

�o
⩽ t1,

or
R : Y ⩽ t1�o ≡ a,

where a < �o, and Y ∼ Poisson(�).

Using the test statistic Y , and the observed value y = 10, we may
compute the p–value

p–value = P(Y ⩽ 10), where Y ∼ Poisson(�o).
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in the case �o = 15, we obtain that

p–value ≈ 0.1185,

thus, we cannot reject Ho at any significant level � ⩽ 10%. Hence,
we cannot conclude that the rate of accidents has dropped at a sig-
nificance level of less than 10%. □


