Solutions to Exam \#3

1. Define the following terms:
(a) Likelihood ratio statistic

Answer: In general, suppose we want to test the hypothesis

$$
\mathrm{H}_{o}: \quad \theta \in \Omega_{o}
$$

versus the alternative

$$
\mathrm{H}_{1}: \quad \theta \in \Omega_{1},
$$

based on a random, $X_{1}, X_{2}, \ldots, X_{n}$, sample from a distribution with distribution function $f(x \mid \theta)$. The likelihood ratio statistic is given by

$$
\Lambda\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\frac{\sup _{\theta \in \Omega_{o}} L\left(\theta \mid x_{1}, x_{2}, \ldots, x_{n}\right)}{\sup _{\theta \in \Omega} L\left(\theta \mid x_{1}, x_{2}, \ldots, x_{n}\right)}
$$

where $\Omega=\Omega_{o} \cup \Omega_{1}$, with $\Omega_{o} \cap \Omega_{1}=\emptyset$, and

$$
L\left(\theta \mid x_{1}, x_{2}, \ldots, x_{n}\right)=f\left(x_{1} \mid \theta\right) \cdot f\left(x_{2} \mid \theta\right) \cdots f\left(x_{n} \mid \theta\right)
$$

is the likelihood function.
(b) Fisher information

Answer: Given a distribution function, $f(x \mid \theta)$, with some parameter θ, the Fisher information of the parameter θ is

$$
I(\theta)=\operatorname{var}\left(\frac{\partial}{\partial \theta} \ln f(x \mid \theta)\right)
$$

(c) Efficient estimator

Answer: An unbiased estimator, W, of a parameter, θ, is said to be an efficient estimator of θ if

$$
\operatorname{var}(W)=\frac{1}{n I(\theta)}
$$

where $I(\theta)$ is the Fisher information of θ.
2. Provide concise answers to the following questions:
(a) State the Neyman-Pearson Lemma

Answer: Out of all the tests at a fixed significance level, α, of the simple hypothesis $\mathrm{H}_{o}: \theta=\theta_{o}$ versus $\mathrm{H}_{1}: \theta=\theta_{1}$, the LRT yields the largest possible power.
(b) Give an example of an estimator which is a maximum likelihood estimator, but it is not unbiased.

Answer: Let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample from a normal $\left(\mu, \sigma^{2}\right)$ distribution. The statistic

$$
\widehat{\sigma}^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(X_{1}-\bar{X}_{n}\right)^{2}
$$

is the MLE of σ^{2}, and it is not unbiased.
(c) State the Crámer-Rao inequality.

Answer: Let W be an estimator of a parameter, θ, based on a random sample, $X_{1}, X_{2}, \ldots, X_{n}$, from a distribution with distribution function $f(x \mid \theta)$. Put $g(\theta)=E_{\theta}(W)$. The Crámer-Rao inequality states that

$$
\operatorname{var}(W) \geqslant \frac{\left[g^{\prime}(\theta)\right]^{2}}{n I(\theta)}
$$

where $I(\theta)$ is the Fisher information.
This inequality is valid provided that the information function, $I(\theta)$, is defined and integration and differentiation can be interchanged as in

$$
\frac{\partial}{\partial \theta} \int_{-\infty}^{\infty} h(x) f(x \mid \theta) \quad \mathrm{d} x=\int_{-\infty}^{\infty} h(x) \frac{\partial}{\partial \theta} f(x \mid \theta) \mathrm{d} x
$$

3. Let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample from a $\operatorname{Gamma}(3, \theta)$ distribution. Find the MLE for θ. Justify your answer.

Solution: The distribution function is given by

$$
f(x \mid \theta)=\frac{1}{\Gamma(3) \theta^{3}} x^{2} e^{-x / \theta} \quad \text { for } 0<x<\infty
$$

and zero elsewhere, where $\Gamma(3)=\Gamma(2+1)=2!=2$. Thus, the likelihood function in this case is

$$
L\left(\theta \mid x_{1}, x_{2}, \ldots, x_{n}\right)=\frac{1}{2^{n} \theta^{3 n}}\left(x_{1} \cdot x_{2} \cdots x_{n}\right)^{2} e^{-y / \theta}
$$

where $y=\sum_{i=1}^{n} x_{i}$.
In order to find an MLE for θ, we need to maximize the function

$$
\begin{aligned}
\ell(\theta) & =\ln L\left(\theta \mid x_{1}, x_{2}, \ldots, x_{n}\right) \\
& =-3 n \ln \theta-\frac{y}{\theta}+\ln \left(\frac{\left(x_{1} \cdot x_{2} \cdots x_{n}\right)^{2}}{2^{n}}\right),
\end{aligned}
$$

whose derivatives are

$$
\ell^{\prime}(\theta)=-\frac{3 n}{\theta}+\frac{y}{\theta^{2}},
$$

and

$$
\ell^{\prime \prime}(\theta)=\frac{3 n}{\theta^{2}}-\frac{2 y}{\theta^{3}}
$$

Thus, $\widehat{\theta}=\frac{y}{3 n}$ is a critical point of ℓ with

$$
\ell^{\prime}(\widehat{\theta})=\frac{3 n}{\widehat{\theta}^{2}}-\frac{6 n \widehat{\theta}}{\widehat{\theta}^{3}}=-\frac{3 n}{\widehat{\theta}^{2}}<0
$$

Hence,

$$
\widehat{\theta}=\frac{1}{3 n} \sum_{i=1}^{n} X_{i}
$$

is the MLE for θ.
4. Let $X_{1}, X_{2}, \ldots, X_{n}$ denote a random sample from a uniform distribution over the interval $[0, \theta]$ for some parameter $\theta>0$ and let $W=2 \bar{X}_{n}$, where \bar{X}_{n} denotes the sample mean.
Compute the following:
(a) $\operatorname{bias}_{\theta}(W)$,
(b) $\operatorname{MSE}_{\theta}(W)$.

Solution:

(a) Compute

$$
E(W)=E\left(2 \bar{X}_{n}\right) 2=2 E\left(\bar{X}_{n}\right)=2 E\left(X_{1}\right)=2 \cdot \frac{\theta}{2}=\theta .
$$

Thus,

$$
\operatorname{bias}_{\theta}(W)=E(\theta)-\theta=0 .
$$

(b) Compute

$$
\begin{aligned}
\operatorname{MSE}_{\theta}(W) & =\operatorname{var}(W)+\left[\operatorname{bias}_{\theta}(W)\right]^{2} \\
& =\operatorname{var}\left(2 \bar{X}_{n}\right) \\
& =4 \cdot \operatorname{var}\left(\bar{X}_{n}\right) \\
& =4 \cdot \frac{\operatorname{var}\left(X_{1}\right)}{n} \\
& =\frac{4}{n} \cdot \frac{\theta^{2}}{12} \\
& =\frac{\theta^{2}}{3 n}
\end{aligned}
$$

5. Let X_{1}, X_{2} denote two independent observations from a $\operatorname{Bernoulli}(p)$ distribution with parameter p, with $0<p<1$.
Construct the most powerful test at a significance level $\alpha=0.04$ to test the simple hypotheses

$$
\mathrm{H}_{o}: \quad p=0.2 \text { versus } \mathrm{H}_{1}: \quad p=0.4
$$

What is the power of the test?
Solution: The likelihood function is

$$
L\left(p \mid x_{2}, x_{2}\right)=p^{y}(1-p)^{2-y}
$$

where $y=x_{1}+x_{2}$.

According to the Neyman-Pearson Lemma, the most powerful test at a given level α is provided by the LRT; that is, a test with rejection region

$$
R: \quad \Lambda\left(x_{1}, x_{2}\right) \leqslant c,
$$

for some $c \in(0,1)$ determined by α, where

$$
\Lambda\left(x_{1}, x_{2}\right)=\frac{L\left(0.2 \mid x_{2}, x_{2}\right)}{L\left(0.4 \mid x_{2}, x_{2}\right)}=\frac{16}{9}\left(\frac{3}{8}\right)^{y} .
$$

In order to find the rejection region, R, we express the LRT in terms of the statistic

$$
Y=X_{1}+X_{2}
$$

as follows:

$$
\Lambda\left(x_{1}, x_{2}\right) \leqslant c
$$

if and only if

$$
\frac{16}{9}\left(\frac{3}{8}\right)^{y} \leqslant c
$$

if and only if

$$
\left(\frac{3}{8}\right)^{y} \leqslant \frac{9 c}{16} .
$$

Taking the natural logarithm on both sides we obtain that

$$
y \ln \left(\frac{3}{8}\right) \leqslant \ln \left(\frac{9 c}{16}\right)
$$

Thus, solving for y,

$$
y \geqslant \frac{\ln \left(\frac{9 c}{16}\right)}{\ln \left(\frac{3}{8}\right)}
$$

since $\ln \left(\frac{3}{8}\right)<0$. We then have that the rejection region for the LRT is

$$
R: \quad Y \geqslant b
$$

for some $b>0$, where $Y=X_{1}+X_{2} \sim \operatorname{binomial}(2, p)$.
To determine the value of b that yields a significance level $\alpha=0.04$, solve for b in the expression

$$
\mathrm{P}(Y \geqslant b)=0.04, \quad \text { for } Y \sim \operatorname{binomial}(2,0.2)
$$

	y		
	0	1	2
$p_{Y}(y \mid 0.2)$	0.64	0.32	0.04
$p_{Y}(y \mid 0.4)$	0.36	0.48	0.16

Table 1: $\operatorname{Binomial}(2, p)$ Probabilities

The values of the probabilities for $Y, p_{Y}(y \mid p)$, under the two hypotheses are given in Table 1.
We see int he table that to get a significance level of $\alpha=0.04$ we must have $b=2$. Thus, the most powerful test at level $\alpha=0.04$ rejects H_{o} if

$$
Y \geqslant 2
$$

The power of this test is the probability that the test will reject H_{o} if H_{1} is true; that is, if $p=0.4$. We see from the entry in the last row and last column in Table 1 this probability is $\gamma(0.4)=0.16$.

