Lecture Examples

1. Let $X_{1}, X_{2}, \ldots, X_{n}$ denote a random sample from a $\operatorname{normal}\left(\mu, \sigma^{2}\right)$ distribution. Show that the sample mean has a normal $\left(\mu, \sigma^{2} / n\right)$ distribution.
Suggestion: Use moment generating functions.
Solution: Compute the mgf of the sample mean $\bar{X}_{n}=\frac{X_{1}+X_{2}+\cdots+X_{n}}{n}$; namely,

$$
\begin{aligned}
M_{\bar{X}_{n}}(t) & =E\left(e^{t \bar{X}_{n}}\right) \\
& =E\left(e^{\left(X_{1}+X_{2}+\cdots+X_{n}\right) \frac{t}{n}}\right) \\
& =M_{X_{1}+X_{2}+\cdots+X_{n}}\left(\frac{t}{n}\right) \\
& =M_{X_{1}}\left(\frac{t}{n}\right) \cdot M_{X_{2}}\left(\frac{t}{n}\right) \cdots M_{X_{n}}\left(\frac{t}{n}\right)
\end{aligned}
$$

where we have used the independence of the random variables $X_{1}, X_{2}, \ldots, X_{n}$. Next, use the assumption that they identically distributed with a normal $\left(\mu, \sigma^{2}\right)$ distribution, we obtain that

$$
\begin{aligned}
M_{\bar{X}_{n}}(t) & =\left[M_{X_{1}}\left(\frac{t}{n}\right)\right]^{n} \\
& =\left[e^{\mu \frac{t}{n}+\sigma^{2} \frac{(t / n)^{2}}{2}}\right]^{n} \\
& =e^{\mu t+\frac{\sigma^{2}}{n} t^{2} / 2}
\end{aligned}
$$

which is the mgf of normal $\left(\mu, \sigma^{2} / n\right)$ random variable. It then follows that \bar{X}_{n} has a $\operatorname{normal}\left(\mu, \sigma^{2} / n\right)$ distribution.
2. The χ^{2} distribution.
(a) One degree of freedom. Let $Z \sim \operatorname{normal}(0,1)$ and define $X=Z^{2}$. Find the pdf and mgf for X. Compute also the mean and variance of X. The random variable X is said to have a χ^{2} distribution one degree of freedom, and we write $X \sim \chi^{2}(1)$.

Solution: The pdf of Z is given by

$$
f_{z}(z)=\frac{1}{\sqrt{2 \pi}} e^{-z^{2} / 2}, \quad \text { for }-\infty<z<\infty
$$

We compute the pdf for X by first determining its cumulative density function (cdf):

$$
\begin{aligned}
P(X \leq x) & =P\left(Z^{2} \leq x\right) \quad \text { for } y \geqslant 0 \\
& =P(-\sqrt{x} \leq Z \leq \sqrt{x}) \\
& =P(-\sqrt{x}<Z \leq \sqrt{x}), \quad \text { since } \mathrm{Z} \text { is continuous. }
\end{aligned}
$$

Thus,

$$
\begin{aligned}
P(X \leq x) & =P(Z \leq \sqrt{x})-P(Z \leq-\sqrt{x}) \\
& =F_{z}(\sqrt{x})-F_{z}(-\sqrt{x}) \text { for } x>0,
\end{aligned}
$$

since X is continuous.
We then have that the cdf of X is

$$
F_{X}(x)=F_{z}(\sqrt{x})-F_{z}(-\sqrt{x}) \quad \text { for } x>0
$$

from which we get, after differentiation with respect to x,

$$
\begin{aligned}
f_{X}(x) & =F_{z}^{\prime}(\sqrt{x}) \cdot \frac{1}{2 \sqrt{x}}+F_{z}^{\prime}(-\sqrt{x}) \cdot \frac{1}{2 \sqrt{x}} \\
& =f_{Z}(\sqrt{x}) \frac{1}{2 \sqrt{x}}+f_{z}(-\sqrt{x}) \frac{1}{2 \sqrt{x}} \\
& =\frac{1}{2 \sqrt{x}}\left\{\frac{1}{\sqrt{2 \pi}} e^{-x / 2}+\frac{1}{\sqrt{2 \pi}} e^{-x / 2}\right\} \\
& =\frac{1}{\sqrt{2 \pi}} \cdot \frac{1}{\sqrt{x}} e^{-x / 2}
\end{aligned}
$$

for $x>0$.
Thus, the pdf of X is

$$
f_{X}(x)= \begin{cases}\frac{1}{\sqrt{2 \pi}} \frac{1}{\sqrt{x}} e^{-x / 2} & x>0 \\ 0 & \text { elsewhere }\end{cases}
$$

Definition. (χ^{2} distribution with n degrees of freedom) Let $X_{1}, X_{2}, \ldots, X_{n}$ be independent, identically distributed random variables with a $\chi^{2}(1)$ distribution. Then then random variable $X_{1}+X_{2}+\cdots+X_{n}$ is said to have a χ^{2} distribution with n degrees of freedom. We write

$$
X_{1}+X_{2}+\cdots+X_{n} \sim \chi^{2}(n)
$$

(b) Two degrees of freedom. Let X and Y be two independent random variable with a $\chi^{2}(1)$ distribution. We would like to know the distribution of the sum $X+Y$.

Solution: Denote the sum $X+Y$ by W. We would like to compute the pdf f_{W}, given that the pdfs of X and Y are

$$
f_{X}(x)= \begin{cases}\frac{1}{\sqrt{2 \pi}} \frac{1}{\sqrt{x}} e^{-x / 2} & x>0 \\ 0 & \text { elsewhere }\end{cases}
$$

and

$$
f_{Y}(y)= \begin{cases}\frac{1}{\sqrt{2 \pi}} \frac{1}{\sqrt{y}} e^{-y / 2} & y>0 \\ 0 & \text { otherwise }\end{cases}
$$

respectively.
We first compute the cdf

$$
F_{W}(w)=P(W \leqslant w) \quad \text { for } w>0
$$

where

$$
\begin{aligned}
P(W \leqslant w) & =P(X+Y \leqslant w) \\
& =\iint_{\{x+y \leqslant w\}} f_{(X, Y)}(x, y) \mathrm{d} x \mathrm{~d} y .
\end{aligned}
$$

Since X and Y are independent, the joint pdf of X and Y is given by

$$
f_{(X, Y)}(x, y)=f_{X}(x) \cdot f_{Y}(y)
$$

or

$$
f_{(X, Y)}(x, y)= \begin{cases}\frac{1}{2 \pi} \frac{1}{\sqrt{x} \sqrt{y}} e^{-(x+y) / 2} & \text { if } x>0, y>0 \\ 0 & \text { otherwise }\end{cases}
$$

We then have that, for $w>0$,

$$
F_{W}(w)=\frac{1}{2 \pi} \int_{0}^{w} \int_{0}^{w-x} \frac{1}{\sqrt{x} \sqrt{y}} e^{-(x+y) / 2} \mathrm{~d} y \mathrm{~d} x
$$

see Figure 1.

Figure 1: $\{x+y \leqslant w\}$
Next, make the change of variables: $u=x, v=x+y$ to get that

$$
F_{W}(w)=\frac{1}{2 \pi} \int_{0}^{w} \int_{0}^{w} \frac{1}{\sqrt{u} \sqrt{v-u}} e^{-v / 2}\left|\frac{\partial(x, y)}{\partial(u, v)}\right| \mathrm{d} u \mathrm{~d} v
$$

where the Jacobian of the change of variables is

$$
\frac{\partial(x, y)}{\partial(u, v)}=\operatorname{det}\left(\begin{array}{cc}
1 & 0 \\
-1 & 1
\end{array}\right)=1
$$

Consequently,

$$
F_{W}(w)=\frac{1}{2 \pi} \int_{0}^{w} e^{-v / 2} \int_{0}^{w} \frac{1}{\sqrt{u} \sqrt{v-u}} \mathrm{~d} u \mathrm{~d} v
$$

Next, differentiate with respect to w to obtain the pdf

$$
f_{W}(w)=\frac{1}{2 \pi} e^{-w / 2} \int_{0}^{w} \frac{1}{\sqrt{u} \sqrt{w-u}} \mathrm{~d} u
$$

where we have applied the Fundamental Theorem of Calculus. Thus, making the change of variables $t=\frac{u}{w}$, so that $\mathrm{d} u=w \mathrm{~d} t$,

$$
\begin{aligned}
f_{W}(w) & =\frac{e^{-w / 2}}{2 \pi} \int_{0}^{1} \frac{w}{\sqrt{w t} \sqrt{w-w t}} \mathrm{~d} t \\
& =\frac{e^{-w / 2}}{2 \pi} \int_{0}^{1} \frac{1}{\sqrt{t} \sqrt{1-t}} \mathrm{~d} t .
\end{aligned}
$$

Making a second change of variables, $s=\sqrt{t}$, we get that $t=s^{2}$ and $\mathrm{d} t=2 s \mathrm{~d} s$, so that

$$
\begin{aligned}
f_{W}(w) & =\frac{e^{-w / 2}}{\pi} \int_{0}^{1} \frac{1}{\sqrt{1-s^{2}}} \mathrm{~d} s \\
& =\frac{e^{-w / 2}}{\pi}[\arcsin (s)]_{0}^{1} \\
& =\frac{1}{2} e^{-w / 2} \quad \text { for } w>0
\end{aligned}
$$

and zero otherwise. It then follows that $W=X+Y$ has the pdf of an exponential(2) random variable.
(c) Three degrees of freedom. Let $X \sim \operatorname{exponential(2)~and~} Y \sim \chi^{2}(1)$ be independent random variables and define $W=X+Y$. Give the distribution of W.

Solution: Since X and Y are independent, by Problem 1 in Assignment $\# 3, f_{W}$ is the convolution of f_{X} and f_{Y} :

$$
\begin{aligned}
f_{W}(w) & =f_{X} * f_{Y}(w) \\
& =\int_{-\infty}^{\infty} f_{X}(u) f_{Y}(w-u) \mathrm{d} u
\end{aligned}
$$

where

$$
f_{X}(x)= \begin{cases}\frac{1}{2} e^{-x / 2} & \text { if } x>0 \\ 0 & \text { otherwise }\end{cases}
$$

and

$$
f_{Y}(y)= \begin{cases}\frac{1}{\sqrt{2 \pi}} \frac{1}{\sqrt{y}} e^{-y / 2} & \text { if } y>0 \\ 0 & \text { otherwise }\end{cases}
$$

It then follows that, for $w>0$,

$$
\begin{aligned}
f_{W}(w) & =\int_{0}^{\infty} \frac{1}{2} e^{-u / 2} f_{Y}(w-u) \mathrm{d} u \\
& =\int_{0}^{w} \frac{1}{2} e^{-u / 2} \frac{1}{\sqrt{2 \pi}} \frac{1}{\sqrt{w-u}} e^{-(w-u) / 2} \mathrm{~d} u \\
& =\frac{e^{-w / 2}}{2 \sqrt{2 \pi}} \int_{0}^{w} \frac{1}{\sqrt{w-u}} \mathrm{~d} u
\end{aligned}
$$

Making the change of variables $t=u / w$, we get that $u=w t$ and $\mathrm{d} u=w \mathrm{~d} t$, so that

$$
\begin{aligned}
f_{W}(w) & =\frac{e^{-w / 2}}{2 \sqrt{2 \pi}} \int_{0}^{1} \frac{1}{\sqrt{w-w t}} w \mathrm{~d} t \\
& =\frac{\sqrt{w} e^{-w / 2}}{2 \sqrt{2 \pi}} \int_{0}^{1} \frac{1}{\sqrt{1-t}} \mathrm{~d} t \\
& =\frac{\sqrt{w} e^{-w / 2}}{\sqrt{2 \pi}}[-\sqrt{1-t}]_{0}^{1} \\
& =\frac{1}{\sqrt{2 \pi}} \sqrt{w} e^{-w / 2}
\end{aligned}
$$

for $w>0$. It then follows that

$$
f_{W}(w)= \begin{cases}\frac{1}{\sqrt{2 \pi}} \sqrt{w} e^{-w / 2} & \text { if } w>0 \\ 0 & \text { otherwise }\end{cases}
$$

This is the pdf for a $\chi^{2}(3)$ random variable.
(d) Four degrees of freedom. Let $X, Y \sim$ exponential(2) be independent random variables and define $W=X+Y$. Give the distribution of W.

Solution: Since X and Y are independent, f_{W} is the convolution of f_{X} and f_{Y} :

$$
\begin{aligned}
f_{W}(w) & =f_{X} * f_{Y}(w) \\
& =\int_{-\infty}^{\infty} f_{X}(u) f_{Y}(w-u) \mathrm{d} u
\end{aligned}
$$

where

$$
f_{X}(x)= \begin{cases}\frac{1}{2} e^{-x / 2} & \text { if } x>0 \\ 0 & \text { otherwise }\end{cases}
$$

and

$$
f_{Y}(y)= \begin{cases}\frac{1}{2} e^{-y / 2} & \text { if } y>0 \\ 0 & \text { otherwise }\end{cases}
$$

It then follows that, for $w>0$,

$$
\begin{aligned}
f_{W}(w) & =\int_{0}^{\infty} \frac{1}{2} e^{-u / 2} f_{Y}(w-u) \mathrm{d} u \\
& =\int_{0}^{w} \frac{1}{2} e^{-u / 2} \frac{1}{2} e^{-(w-u) / 2} \mathrm{~d} u \\
& =\frac{e^{-w / 2}}{4} \int_{0}^{w} \mathrm{~d} u \\
& =\frac{w e^{-w / 2}}{4}
\end{aligned}
$$

for $w>0$. It then follows that

$$
f_{W}(w)= \begin{cases}\frac{1}{4} w e^{-w / 2} & \text { if } w>0 \\ 0 & \text { otherwise }\end{cases}
$$

This is the pdf for a $\chi^{2}(4)$ random variable.
(e) n degrees of freedom. In this exercise we prove that if $W \sim \chi^{2}(n)$, then the pdf of W is given by

$$
f_{W}(w)= \begin{cases}\frac{1}{\Gamma(n / 2) 2^{n / 2}} w^{\frac{n}{2}-1} e^{-w / 2} & \text { if } w>0 \tag{1}\\ 0 & \text { otherwise }\end{cases}
$$

where Γ denotes the Gamma function defined by

$$
\Gamma(z)=\int_{0}^{\infty} t^{z-1} e^{-t} \mathrm{~d} t \quad \text { for all real values of } z \text { except } 0,-1,-2,-3, \ldots
$$

Proof: We proceed by induction of n. Observe that when $n=1$ the formula in (1) yields, for $w>0$,

$$
f_{W}(w)=\frac{1}{\Gamma(1 / 2) 2^{1 / 2}} w^{\frac{1}{2}-1} e^{-w / 2}=\frac{1}{\sqrt{2 \pi}} \frac{1}{\sqrt{x}} e^{-w / 2}
$$

which is the pdf for a $\chi^{(1)}$ random variable. Thus, the formula in (1) holds true for $n=1$.
Next, assume that a $\chi^{2}(n)$ random variable has pdf given (1). We will show that if $W \sim \chi^{2}(n+1)$, then its pdf is given by

$$
f_{W}(w)= \begin{cases}\frac{1}{\Gamma((n+1) / 2) 2^{(n+1) / 2}} w^{\frac{n-1}{2}} e^{-w / 2} & \text { if } w>0 \tag{2}\\ 0 & \text { otherwise }\end{cases}
$$

By the definition of a $\chi^{2}(n+1)$ random variable, we have that $W=X+Y$ where $X \sim \chi^{2}(n)$ and $Y \sim \chi^{2}(1)$ are independent random variables. It then follows that

$$
f_{W}=f_{X} * f_{Y}
$$

where

$$
f_{X}(x)= \begin{cases}\frac{1}{\Gamma(n / 2) 2^{n / 2}} x^{\frac{n}{2}-1} e^{-x / 2} & \text { if } x>0 \\ 0 & \text { otherwise }\end{cases}
$$

and

$$
f_{Y}(y)= \begin{cases}\frac{1}{\sqrt{2 \pi}} \frac{1}{\sqrt{y}} e^{-y / 2} & \text { if } y>0 \\ 0 & \text { otherwise }\end{cases}
$$

Consequently, for $w>0$,

$$
\begin{aligned}
f_{W}(w) & =\int_{0}^{w} \frac{1}{\Gamma(n / 2) 2^{n / 2}} u^{\frac{n}{2}-1} e^{-u / 2} \frac{1}{\sqrt{2 \pi}} \frac{1}{\sqrt{w-u}} e^{-(w-u) / 2} \mathrm{~d} u \\
& =\frac{e^{-w / 2}}{\Gamma(n / 2) \sqrt{\pi} 2^{(n+1) / 2}} \int_{0}^{w} \frac{u^{\frac{n}{2}-1}}{\sqrt{w-u}} \mathrm{~d} u .
\end{aligned}
$$

Next, make the change of variables $t=u / w$; we then have that $u=w t$, $\mathrm{d} u=w \mathrm{~d} t$ and

$$
f_{W}(w)=\frac{w^{\frac{n-1}{2}} e^{-w / 2}}{\Gamma(n / 2) \sqrt{\pi} 2^{(n+1) / 2}} \int_{0}^{1} \frac{t^{\frac{n}{2}-1}}{\sqrt{1-t}} \mathrm{~d} t
$$

Making a further change of variables $t=z^{2}$, so that $\mathrm{d} t=2 z \mathrm{~d} z$, we obtain that

$$
\begin{equation*}
f_{W}(w)=\frac{2 w^{\frac{n-1}{2}} e^{-w / 2}}{\Gamma(n / 2) \sqrt{\pi} 2^{(n+1) / 2}} \int_{0}^{1} \frac{z^{n-1}}{\sqrt{1-z^{2}}} \mathrm{~d} z \tag{3}
\end{equation*}
$$

It remains to evaluate the integrals

$$
\int_{0}^{1} \frac{z^{n-1}}{\sqrt{1-z^{2}}} \mathrm{~d} z \quad \text { for } n=1,2,3, \ldots
$$

We can evaluate these by making the trigonometric substitution $z=\sin \theta$ so that $\mathrm{d} z=\cos \theta \mathrm{d} \theta$ and

$$
\int_{0}^{1} \frac{z^{n-1}}{\sqrt{1-z^{2}}} \mathrm{~d} z=\int_{0}^{\pi / 2} \sin ^{n-1} \theta \mathrm{~d} \theta
$$

Looking up the last integral in a table of integrals we find that, if n is even and $n \geqslant 4$, then

$$
\int_{0}^{\pi / 2} \sin ^{n-1} \theta \mathrm{~d} \theta=\frac{1 \cdot 3 \cdot 5 \cdots(n-2)}{2 \cdot 4 \cdot 6 \cdots(n-1)}
$$

which can be written in terms of the Gamma function as

$$
\begin{equation*}
\int_{0}^{\pi / 2} \sin ^{n-1} \theta \mathrm{~d} \theta=\frac{2^{n-2}\left[\Gamma\left(\frac{n}{2}\right)\right]^{2}}{\Gamma(n)} \tag{4}
\end{equation*}
$$

Note that this formula also works for $n=2$.
Similarly, we obtain that for odd n with $n \geqslant 1$ that

$$
\begin{equation*}
\int_{0}^{\pi / 2} \sin ^{n-1} \theta \mathrm{~d} \theta=\frac{\Gamma(n)}{2^{n-1}\left[\Gamma\left(\frac{n+1}{2}\right)\right]^{2}} \frac{\pi}{2} \tag{5}
\end{equation*}
$$

Now, if n is odd and $n \geqslant 1$ we may substitute (5) into (3) to get

$$
\begin{aligned}
f_{W}(w) & =\frac{2 w^{\frac{n-1}{2}} e^{-w / 2}}{\Gamma(n / 2) \sqrt{\pi} 2^{(n+1) / 2}} \frac{\Gamma(n)}{2^{n-1}\left[\Gamma\left(\frac{n+1}{2}\right)\right]^{2}} \frac{\pi}{2} \\
& =\frac{w^{\frac{n-1}{2}} e^{-w / 2}}{\Gamma(n / 2) 2^{(n+1) / 2}} \frac{\Gamma(n) \sqrt{\pi}}{2^{n-1}\left[\Gamma\left(\frac{n+1}{2}\right)\right]^{2}}
\end{aligned}
$$

Now, by Problem 5 in Assignment 1, for odd n,

$$
\Gamma\left(\frac{n}{2}\right)=\frac{\Gamma(n) \sqrt{\pi}}{2^{n-1} \Gamma\left(\frac{n+1}{2}\right)}
$$

It the follows that

$$
f_{W}(w)=\frac{w^{\frac{n-1}{2}} e^{-w / 2}}{\Gamma\left(\frac{n+1}{2}\right) 2^{(n+1) / 2}}
$$

for $w>0$, which is (2) for odd n.
Next, suppose that n is a positive, even integer. In this case we substitute (4) into (3) and get

$$
f_{W}(w)=\frac{2 w^{\frac{n-1}{2}} e^{-w / 2}}{\Gamma(n / 2) \sqrt{\pi} 2^{(n+1) / 2}} \frac{2^{n-2}\left[\Gamma\left(\frac{n}{2}\right)\right]^{2}}{\Gamma(n)}
$$

or

$$
\begin{equation*}
f_{W}(w)=\frac{w^{\frac{n-1}{2}} e^{-w / 2}}{2^{(n+1) / 2}} \frac{2^{n-1} \Gamma\left(\frac{n}{2}\right)}{\sqrt{\pi} \Gamma(n)} \tag{6}
\end{equation*}
$$

Now, since n is even, $n+1$ is odd, so that by by Problem 5 in Assignment 1 again, we get that

$$
\Gamma\left(\frac{n+1}{2}\right)=\frac{\Gamma(n+1) \sqrt{\pi}}{2^{n} \Gamma\left(\frac{n+2}{2}\right)}=\frac{n \Gamma(n) \sqrt{\pi}}{2^{n} \frac{n}{2} \Gamma\left(\frac{n}{2}\right)},
$$

from which we get that

$$
\frac{2^{n-1} \Gamma\left(\frac{n}{2}\right)}{\sqrt{\pi} \Gamma(n)}=\frac{1}{\Gamma\left(\frac{n+1}{2}\right)}
$$

Substituting this into (6) yields

$$
f_{W}(w)=\frac{w^{\frac{n-1}{2}} e^{-w / 2}}{\Gamma\left(\frac{n+1}{2}\right) 2^{(n+1) / 2}}
$$

for $w>0$, which is (2) for even n. This completes inductive step and the proof is now complete. That is, if $W \sim \chi^{2}(n)$ then the pdf of W is given by

$$
f_{W}(w)= \begin{cases}\frac{1}{\Gamma(n / 2) 2^{n / 2}} w^{\frac{n}{2}-1} e^{-w / 2} & \text { if } w>0 \\ 0 & \text { otherwise }\end{cases}
$$

for $n=1,2,3, \ldots$
3.
4. The t distribution. Let $Z \sim \operatorname{normal}(0,1)$ and $X \sim \chi^{2}(n-1)$ be independent random variables. Define

$$
T=\frac{Z}{\sqrt{X /(n-1)}}
$$

Give the pdf of the random variable T.
Solution: We first compute the cdf, F_{T}, of T; namely,

$$
\begin{aligned}
F_{T}(t) & =P(T \leqslant t) \\
& =P\left(\frac{Z}{\sqrt{X /(n-1)}} \leqslant t\right) \\
& =\iint_{R} f_{(X, Z)}(x, z) \mathrm{d} x \mathrm{~d} z
\end{aligned}
$$

where R_{t} is the region in the $x z$-plane given by

$$
R_{t}=\left\{(x, z) \in \mathbb{R}^{2} \mid z<t \sqrt{x /(n-1)}, x>0\right\}
$$

and the joint distribution, $f_{(X, Z)}$, of X and Z is given by

$$
f_{(X, Z)}(x, z)=f_{X}(x) \cdot f_{Z}(z) \quad \text { for } \quad x>0 \text { and } z \in \mathbb{R}
$$

because X and Z are assumed to be independent. Furthermore,

$$
f_{X}(x)= \begin{cases}\frac{1}{\Gamma\left(\frac{n-1}{2}\right) 2^{(n-1) / 2}} x^{\frac{n-1}{2}-1} e^{-x / 2} & \text { if } x>0 \\ 0 & \text { otherwise }\end{cases}
$$

and

$$
f_{Z}(z)=\frac{1}{\sqrt{2 \pi}} e^{-z^{2} / 2}, \quad \text { for }-\infty<z<\infty
$$

We then have that

$$
F_{T}(t)=\int_{0}^{\infty} \int_{-\infty}^{t \sqrt{x /(n-1)}} \frac{x^{\frac{n-3}{2}} e^{-\left(x+z^{2}\right) / 2}}{\Gamma\left(\frac{n-1}{2}\right) \sqrt{\pi} 2^{\frac{n}{2}}} \mathrm{~d} z \mathrm{~d} x
$$

Next, make the change of variables

$$
\begin{aligned}
u & =x \\
v & =\frac{z}{\sqrt{x /(n-1)}}
\end{aligned}
$$

so that

$$
\begin{aligned}
& x=u \\
& z=v \sqrt{u /(n-1)}
\end{aligned}
$$

Consequently,

$$
F_{T}(t)=\frac{1}{\Gamma\left(\frac{n-1}{2}\right) \sqrt{\pi} 2^{\frac{n}{2}}} \int_{-\infty}^{t} \int_{0}^{\infty} u^{\frac{n-3}{2}} e^{-\left(u+u v^{2} /(n-1)\right) / 2}\left|\frac{\partial(x, z)}{\partial(u, v)}\right| \mathrm{d} u \mathrm{~d} v
$$

where the Jacobian of the change of variables is

$$
\begin{aligned}
\frac{\partial(x, z)}{\partial(u, v)} & =\operatorname{det}\left(\begin{array}{cc}
1 & 0 \\
v / 2 \sqrt{u} \sqrt{n-1} & u^{1 / 2} / \sqrt{n-1}
\end{array}\right) \\
& =\frac{u^{1 / 2}}{\sqrt{n-1}}
\end{aligned}
$$

It then follows that

$$
F_{T}(t)=\frac{1}{\Gamma\left(\frac{n-1}{2}\right) \sqrt{(n-1) \pi} 2^{\frac{n}{2}}} \int_{-\infty}^{t} \int_{0}^{\infty} u^{\frac{n}{2}-1} e^{-\left(u+u v^{2} /(n-1)\right) / 2} \mathrm{~d} u \mathrm{~d} v
$$

Next, differentiate with respect to t and apply the Fundamental Theorem of Calculus to get

$$
\begin{aligned}
f_{T}(t) & =\frac{1}{\Gamma\left(\frac{n-1}{2}\right) \sqrt{(n-1) \pi} 2^{\frac{n}{2}}} \int_{0}^{\infty} u^{\frac{n}{2}-1} e^{-\left(u+u t^{2} /(n-1)\right) / 2} \mathrm{~d} u \\
& =\frac{1}{\Gamma\left(\frac{n-1}{2}\right) \sqrt{(n-1) \pi} 2^{\frac{n}{2}}} \int_{0}^{\infty} u^{\frac{n}{2}-1} e^{-\left(1+\frac{t^{2}}{n-1}\right) u / 2} \mathrm{~d} u
\end{aligned}
$$

Put $\alpha=\frac{n}{2}$ and $\beta=\frac{2}{1+\frac{t^{2}}{n-1}}$. Then,

$$
\begin{aligned}
f_{T}(t) & =\frac{1}{\Gamma\left(\frac{n-1}{2}\right) \sqrt{(n-1) \pi} 2^{\alpha}} \int_{0}^{\infty} u^{\alpha-1} e^{-u / \beta} \mathrm{d} u \\
& =\frac{\Gamma(\alpha) \beta^{\alpha}}{\Gamma\left(\frac{n-1}{2}\right) \sqrt{(n-1) \pi} 2^{\alpha}} \int_{0}^{\infty} \frac{u^{\alpha-1} e^{-u / \beta}}{\Gamma(\alpha) \beta^{\alpha}} \mathrm{d} u
\end{aligned}
$$

where

$$
f_{U}(u)= \begin{cases}\frac{u^{\alpha-1} e^{-u / \beta}}{\Gamma(\alpha) \beta^{\alpha}} & \text { if } u>0 \\ 0 & \text { if } u \leqslant 0\end{cases}
$$

is the pdf of a $\Gamma(\alpha, \beta)$ random variable (see Problem 5 in Assignment $\# 3)$. We then have that

$$
f_{T}(t)=\frac{\Gamma(\alpha) \beta^{\alpha}}{\Gamma\left(\frac{n-1}{2}\right) \sqrt{(n-1) \pi} 2^{\alpha}} \quad \text { for } t \in \mathbb{R}
$$

Using the definitions of α and β we obtain that

$$
f_{T}(t)=\frac{\Gamma\left(\frac{n}{2}\right)}{\Gamma\left(\frac{n-1}{2}\right) \sqrt{(n-1) \pi}} \cdot \frac{1}{\left(1+\frac{t^{2}}{n-1}\right)^{n / 2}} \quad \text { for } t \in \mathbb{R}
$$

This is the pdf of a random variable with a t distribution with $n-1$ degrees of freedom. In general, a random variable, T, is said to have a t distribution with r degrees of freedom, for $r \geqslant 1$, if its pdf is given by

$$
f_{T}(t)=\frac{\Gamma\left(\frac{r+1}{2}\right)}{\Gamma\left(\frac{r}{2}\right) \sqrt{r \pi}} \cdot \frac{1}{\left(1+\frac{t^{2}}{r}\right)^{(r+1) / 2}} \quad \text { for } t \in \mathbb{R}
$$

We write $T \sim t(r)$. Thus, in this example we have seen that, if $Z \sim \operatorname{norma}(0,1)$ and $X \sim \chi^{2}(n-1)$, then

$$
\frac{Z}{\sqrt{X /(n-1)}} \sim t(n-1)
$$

