Assignment #3

Due on Wednesday, September 28, 2011

Read Section 2.1 on Vector-Valued Functions of \mathbb{R} in Baxandall and Liebek's text (pp. 26–29).

Read Section 4.1 on Vector-Valued Functions of \mathbb{R}^m in Baxandall and Liebek's text (pp. 182–184).

Read Section 4.2 on *Continuity and Limits* in Baxandall and Liebek's text (pp. 185–188).

Read Section 3.1 on *Types of Functions in Euclidean Space* in the class Lecture Notes (pp. 27–28).

Read Section 3.2 on *Open Subsets of Euclidean Space* in the class Lecture Notes (pp. 28–29).

Read Section 3.3 on *Continuous Functions* in the class Lecture Notes (pp. 29–39).

Background and Definitions

• (Open Balls in \mathbb{R}^n) Let r denote a positive real number and v a vector in \mathbb{R}^n . The open ball of radius r around v is the subset, $B_r(v)$, of \mathbb{R}^n given by

$$B_r(v) = \{ w \in \mathbb{R}^n \mid ||w - v|| < r \};$$

in other words, $B_r(v)$, is the set of points in \mathbb{R}^n whose distance from v is strictly less than r.

• (Open Sets in \mathbb{R}^n) A set $U \subseteq \mathbb{R}^n$ is said to be open if either $U = \emptyset$ (i.e., U is empty), or for every $u \in U$ there exists a positive number r such that

$$B_r(u) \subset U.$$

- (Continuous Function) Let U denote an open subset of \mathbb{R}^n . A function $F: U \to \mathbb{R}^m$ is said to be continuous at $x \in U$ if and only if $\lim_{\|y-x\|\to 0} \|F(y) F(x)\| = 0$.
- (Image) If $A \subseteq U$, the image of A under the map $F: U \to \mathbb{R}^m$, denoted by F(A), is defined as the set $F(A) = \{y \in \mathbb{R}^m \mid y = F(x) \text{ for some } x \in A\}.$
- (*Pre-image*) If $B \subseteq \mathbb{R}^m$, the *pre-image of* B under the map $F: U \to \mathbb{R}^m$, denoted by $F^{-1}(B)$, is defined as the set $F^{-1}(B) = \{x \in U \mid F(x) \in B\}$.

Note that $F^{-1}(B)$ is always defined even if F does not have an inverse map.

Math 107. Rumbos

Do the following problems

- 1. Let U_1 and U_2 denote subsets in \mathbb{R}^n .
 - (a) Show that if U_1 and U_2 are open subsets of \mathbb{R}^n , then their intersection

$$U_1 \cap U_2 = \{ y \in \mathbb{R}^n \mid y \in U_1 \text{ and } y \in U_2 \}$$

is also open.

(b) Show that the set
$$\left\{ \begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^2 \mid y = 0 \right\}$$
 is not an open subset of \mathbb{R}^2 .

2. In Problem 4 of Assignment #3 you proved that every linear transformation $T: \mathbb{R}^n \to \mathbb{R}$ must be of the form

$$T(v) = w \cdot v$$
 for every $v \in \mathbb{R}^n$,

where w is some vector in \mathbb{R}^n . Use this fact, together with the Cauchy–Schwarz inequality, to prove that T is continuous at every point in \mathbb{R}^n .

3. A subset, U, of \mathbb{R}^n is said to be **convex** if given any two points x and y in U, the straight line segment connecting them is entirely contained in U; in symbols,

$$\{x + t(y - x) \in \mathbb{R}^n \mid 0 \le t \le 1\} \subseteq U$$

- (a) Prove that the ball $B_r(O) = \{x \in \mathbb{R}^n \mid ||x|| < R\}$ is a convex subset of \mathbb{R}^n .
- (b) Prove that the "punctured unit disc" in \mathbb{R}^2 ,

$$\left\{ \begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{R}^2 \mid 0 < x^2 + y^2 < 1 \right\},\$$

is not a convex set.

- 4. Let x and y denote real numbers.
 - (a) Starting with the self–evident inequality: $(|x|-|y|)^2 \geqslant 0,$ derive the inequality

$$|xy| \leqslant \frac{1}{2}(x^2 + y^2).$$

(b) Let $f: \mathbb{R}^2 \to \mathbb{R}$ be defined by

$$f(x,y) = \begin{cases} \frac{xy}{\sqrt{x^2 + y^2}} & \text{if } (x,y) \neq (0,0), \\ 0 & \text{if } (x,y) = (0,0), \end{cases}$$

Use the inequality derived in the previous part to prove that f is continuous at the origin.

5. Let

$$f(x,y) = \frac{\sin(x^2 + y^2)}{x^2 + y^2}, \quad (x,y) \neq (0,0).$$

Define f(0,0) so that f(x,y) is continuous at (0,0). Justify your answer.

6. Use the triangle inequality to prove that, for any x and y in \mathbb{R}^n ,

$$|||y|| - ||x||| \le ||y - x||.$$

Use this inequality to deduce that the function $f \colon \mathbb{R}^n \to \mathbb{R}$ given by

$$f(x) = ||x||$$
 for all $x \in \mathbb{R}^n$

is continuous on \mathbb{R}^n .

7. Let f(x, y) and g(x, y) denote two functions defined on a open region, D, in \mathbb{R}^2 . Prove that the vector field $F: D \to \mathbb{R}^2$, defined by

$$F\begin{pmatrix}x\\y\end{pmatrix} = \begin{pmatrix}f(x,y)\\g(x,y)\end{pmatrix}$$
 for all $\begin{pmatrix}x\\y\end{pmatrix} \in \mathbb{R}^2$,

is continuous on D if and only f and g are both continuous on D.

- 8. Let U denote an open subset of \mathbb{R}^n and let $F: U \to \mathbb{R}^m$ and $G: U \to \mathbb{R}^m$ be two given functions.
 - (a) Explain how the sum F + G is defined.
 - (b) Prove that if both F and G are continuous on U, then their sum is also continuous.

(Suggestion: The triangle inequality might come in handy.)

Math 107. Rumbos

9. In each of the following, given the function $F: U \to \mathbb{R}^m$ and the set B, compute the pre-image $F^{-1}(B)$.

(a)
$$F: \mathbb{R}^2 \to \mathbb{R}^2$$
, $F\begin{pmatrix} x\\ y \end{pmatrix} = \begin{pmatrix} x^2 + y^2\\ x^2 - y^2 \end{pmatrix}$, and $B = \left\{ \begin{pmatrix} 1\\ 0 \end{pmatrix} \right\}$.
(b) $f: D' \to \mathbb{R}$,

$$f(x,y) = \frac{1}{\sqrt{1 - x^2 - y^2}}, \text{ for } (x,y) \in D'$$

where $D' = \{(x, y) \in \mathbb{R}^2 \mid 0 < x^2 + y^2 < 1\}$ (the punctured unit disc), $B = \{1\}.$

- (c) $f: D' \to \mathbb{R}$ is as in part (b), and $B = \{2\}$.
- (d) $f: D' \to \mathbb{R}$ is as in part (b), and $B = \{1/2\}$.

10. Compute the image the given sets under the following maps

- (a) $\sigma \colon \mathbb{R} \to \mathbb{R}^2$, $\sigma(t) = (\cos t, \sin t)$ for all $t \in \mathbb{R}$. Compute $\sigma(\mathbb{R})$.
- (b) $f: D' \to \mathbb{R}$ and D' are as given in part (b) of the previous problem. Compute f(D').