Assignment #4

Due on Wednesday, October 5, 2011

Read Section 4.2 on *Continuity and Limits* in Baxandall and Liebek's text (pp. 185–188).

Read Section 3.3 on *Continuous Functions* in the class Lecture Notes (pp. 29–39).

Background and Definitions

- (Open Sets in \mathbb{R}^n) A set $U \subseteq \mathbb{R}^n$ is said to be open if either $U = \emptyset$, or for every $u \in U$ there exists a positive number r such that $B_r(u) \subset U$.
- (Continuous Function) Let U denote an open subset of \mathbb{R}^n . A function $F: U \to \mathbb{R}^m$ is said to be continuous at $x \in U$ if and only if $\lim_{\|y-x\|\to 0} \|F(y) F(x)\| = 0$.
- (Image) If $A \subseteq U$, the image of A under the map $F: U \to \mathbb{R}^m$, denoted by F(A), is defined as the set $F(A) = \{y \in \mathbb{R}^m \mid y = F(x) \text{ for some } x \in A\}$.
- (Pre-image) If $B \subseteq \mathbb{R}^m$, the pre-image of B under the map $F: U \to \mathbb{R}^m$, denoted by $F^{-1}(B)$, is defined as the set $F^{-1}(B) = \{x \in U \mid F(x) \in B\}$. Note that $F^{-1}(B)$ is always defined even if F does not have an inverse map.
- (Continuous Functions 2) Let U denote an open subset of \mathbb{R}^n . A function $F: U \to \mathbb{R}^m$ is continuous on U if and only if, for every open subset V of \mathbb{R}^m , the pre-image of V under F, $F^{-1}(V)$ is open in \mathbb{R}^n .
- (Composition of Continuous Functions) Let U denote an open subset of \mathbb{R}^n and Q an open subset of \mathbb{R}^m . Suppose that the maps $F: U \to \mathbb{R}^m$ and $G: Q \to \mathbb{R}^k$ are continuous on their respective domains and that $F(U) \subseteq Q$. Then, the composition $G \circ F: U \to \mathbb{R}^k$ is continuous on U.

Do the following problems

- 1. Let U denote an open subset of \mathbb{R}^n . Suppose that $f: U \to \mathbb{R}$ is a scalar field and $G: U \to \mathbb{R}^m$ is vector valued function.
 - (a) Explain how the product fG is defined.
 - (b) Prove that if both f and G are continuous on U, then the vector valued function fG is also continuous on U.

2. Let U be an open subset of \mathbb{R}^2 . Let $f: U \to \mathbb{R}$ and $g: U \to \mathbb{R}$ be two scalar fields on U, and define $h: U \to \mathbb{R}$ by

$$h(x,y) = f(x,y)g(x,y)$$
 for all $(x,y) \in U$.

Prove that if both f and g are continuous on U, then so is h.

Suggestion: First prove that the function $G: \mathbb{R}^2 \to \mathbb{R}$, defined by G(x,y) = xy for all $(x,y) \in \mathbb{R}^2$, is continuous. Then, let $F: U \to \mathbb{R}^2$ denote the map given by

$$F(x,y) = (f(x,y), g(x,y))$$
 for all $(x,y) \in U$,

and observe that $h = G \circ F$.

- 3. Let $U = \mathbb{R}^n \setminus \{\mathbf{0}\} = \{v \in \mathbb{R}^n \mid v \neq \mathbf{0}\}.$
 - (a) Prove that U is an open subset of \mathbb{R}^n .
 - (b) Define $f: \mathbb{R}^n \to \mathbb{R}$ by

$$f(v) = \frac{1}{\|v\|}$$
 for all $v \in U$.

Prove that f is continuous on U.

Suggestion: Note that the function, g, defined by

$$g(t) = \frac{1}{t}$$
 for all $t \neq 0$,

is continuous for $t \neq 0$.

4. Let $I \subseteq \mathbb{R}$ be an open interval and $\sigma: I \to \mathbb{R}^n$ be continuous path in \mathbb{R}^n satisfying $\sigma(t) \neq \mathbf{0}$ for all $t \in I$. Define the function $f: I \to \mathbb{R}$ by

$$f(t) = \frac{1}{\|\sigma(t)\|}$$
 for all $t \in I$.

Prove that f is continuous on I.

5. Let $f(x,y) = \frac{x^2}{\sqrt{x^2 + y^2}}$, for $(x,y) \neq (0,0)$. Define f(0,0) so that the function $f: \mathbb{R}^2 \to \mathbb{R}^2$ is continuous at (0,0). Explain why f is continuous everywhere in \mathbb{R}^2 .

- 6. Let $f(x,y) = \frac{x^2}{x^2 + y^2}$, for $(x,y) \neq (0,0)$. Show that the function f cannot be defined at (0,0) so as to make it a continuous function.
- 7. Let U denote an open subset of \mathbb{R}^n and suppose that $U \neq \emptyset$. A function $F: U \to \mathbb{R}^m$ is said to satisfy a Lipschitz condition on U if and only if there exists a positive constant, K, such that

$$||F(v) - F(u)|| \le K||v - u||, \text{ for all } u, v \in U.$$

Prove that if $F:U\to\mathbb{R}^m$ satisfies a a Lipschitz condition on U, then F is continuous on U.

8. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be given by

$$f(x,y) = \begin{cases} \frac{x+y}{\sqrt{x^2+y^2}}, & \text{if } (x,y) \neq (0,0); \\ 0, & \text{if } (x,y) = (0,0). \end{cases}$$

Determine whether or not f is continuous at (0,0).

9. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be given by

$$f(x,y) = \begin{cases} \frac{xy^2}{\sqrt{x^2 + y^2}}, & \text{if } (x,y) \neq (0,0); \\ 0, & \text{if } (x,y) = (0,0). \end{cases}$$

Determine whether or not f is continuous at (0,0).

10. Let

$$f(x,y) = \frac{x-y}{x+y}, \quad x+y \neq 0.$$

Can f be defined on the line x + y = 0 so that it is continuous at some point on this line?