Assignment \#4

Due on Wednesday, October 5, 2011
Read Section 4.2 on Continuity and Limits in Baxandall and Liebek's text (pp. 185-188).

Read Section 3.3 on Continuous Functions in the class Lecture Notes (pp. 29-39).

Background and Definitions

- (Open Sets in \mathbb{R}^{n}) A set $U \subseteq \mathbb{R}^{n}$ is said to be open if either $U=\emptyset$, or for every $u \in U$ there exists a positive number r such that $B_{r}(u) \subset U$.
- (Continuous Function) Let U denote an open subset of \mathbb{R}^{n}. A function $F: U \rightarrow$ \mathbb{R}^{m} is said to be continuous at $x \in U$ if and only if $\lim _{\|y-x\| \rightarrow 0}\|F(y)-F(x)\|=0$.
- (Image) If $A \subseteq U$, the image of A under the map $F: U \rightarrow \mathbb{R}^{m}$, denoted by $F(A)$, is defined as the set $F(A)=\left\{y \in \mathbb{R}^{m} \mid y=F(x)\right.$ for some $\left.x \in A\right\}$.
- (Pre-image) If $B \subseteq \mathbb{R}^{m}$, the pre-image of B under the map $F: U \rightarrow \mathbb{R}^{m}$, denoted by $F^{-1}(B)$, is defined as the set $F^{-1}(B)=\{x \in U \mid F(x) \in B\}$.
Note that $F^{-1}(B)$ is always defined even if F does not have an inverse map.
- (Continuous Functions 2) Let U denote an open subset of \mathbb{R}^{n}. A function $F: U \rightarrow \mathbb{R}^{m}$ is continuous on U if and only if, for every open subset V of \mathbb{R}^{m}, the pre-image of V under $F, F^{-1}(V)$ is open in \mathbb{R}^{n}.
- (Composition of Continuous Functions) Let U denote an open subset of \mathbb{R}^{n} and Q an open subset of \mathbb{R}^{m}. Suppose that the maps $F: U \rightarrow \mathbb{R}^{m}$ and $G: Q \rightarrow \mathbb{R}^{k}$ are continuous on their respective domains and that $F(U) \subseteq Q$. Then, the composition $G \circ F: U \rightarrow \mathbb{R}^{k}$ is continuous on U.

Do the following problems

1. Let U denote an open subset of \mathbb{R}^{n}. Suppose that $f: U \rightarrow \mathbb{R}$ is a scalar field and $G: U \rightarrow \mathbb{R}^{m}$ is vector valued function.
(a) Explain how the product $f G$ is defined.
(b) Prove that if both f and G are continuous on U, then the vector valued function $f G$ is also continuous on U.
2. Let U be an open subset of \mathbb{R}^{2}. Let $f: U \rightarrow \mathbb{R}$ and $g: U \rightarrow \mathbb{R}$ be two scalar fields on U, and define $h: U \rightarrow \mathbb{R}$ by

$$
h(x, y)=f(x, y) g(x, y) \quad \text { for all } \quad(x, y) \in U
$$

Prove that if both f and g are continuous on U, then so is h.
Suggestion: First prove that the function $G: \mathbb{R}^{2} \rightarrow \mathbb{R}$, defined by $G(x, y)=x y$ for all $(x, y) \in \mathbb{R}^{2}$, is continuous. Then, let $F: U \rightarrow \mathbb{R}^{2}$ denote the map given by

$$
F(x, y)=(f(x, y), g(x, y)) \quad \text { for all }(x, y) \in U
$$

and observe that $h=G \circ F$.
3. Let $U=\mathbb{R}^{n} \backslash\{\mathbf{0}\}=\left\{v \in \mathbb{R}^{n} \mid v \neq \mathbf{0}\right\}$.
(a) Prove that U is an open subset of \mathbb{R}^{n}.
(b) Define $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ by

$$
f(v)=\frac{1}{\|v\|} \quad \text { for all } \quad v \in U
$$

Prove that f is continuous on U.
Suggestion: Note that the function, g, defined by

$$
g(t)=\frac{1}{t} \quad \text { for all } t \neq 0
$$

is continuous for $t \neq 0$.
4. Let $I \subseteq \mathbb{R}$ be an open interval and $\sigma: I \rightarrow \mathbb{R}^{n}$ be continuous path in \mathbb{R}^{n} satisfying $\sigma(t) \neq \mathbf{0}$ for all $t \in I$. Define the function $f: I \rightarrow \mathbb{R}$ by

$$
f(t)=\frac{1}{\|\sigma(t)\|} \quad \text { for all } t \in I
$$

Prove that f is continuous on I.
5. Let $f(x, y)=\frac{x^{2}}{\sqrt{x^{2}+y^{2}}}$, for $(x, y) \neq(0,0)$. Define $f(0,0)$ so that the function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is continuous at $(0,0)$. Explain why f is continuous everywhere in \mathbb{R}^{2}.
6. Let $f(x, y)=\frac{x^{2}}{x^{2}+y^{2}}$, for $(x, y) \neq(0,0)$. Show that the function f cannot be defined at $(0,0)$ so as to make it a continuous function.
7. Let U denote an open subset of \mathbb{R}^{n} and suppose that $U \neq \emptyset$. A function $F: U \rightarrow \mathbb{R}^{m}$ is said to satisfy a Lipschitz condition on U if and only if there exists a positive constant, K, such that

$$
\|F(v)-F(u)\| \leqslant K\|v-u\|, \quad \text { for all } u, v \in U
$$

Prove that if $F: U \rightarrow \mathbb{R}^{m}$ satisfies a a Lipschitz condition on U, then F is continuous on U.
8. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be given by

$$
f(x, y)= \begin{cases}\frac{x+y}{\sqrt{x^{2}+y^{2}}}, & \text { if }(x, y) \neq(0,0) \\ 0, & \text { if }(x, y)=(0,0)\end{cases}
$$

Determine whether or not f is continuous at $(0,0)$.
9. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be given by

$$
f(x, y)= \begin{cases}\frac{x y^{2}}{\sqrt{x^{2}+y^{2}}}, & \text { if }(x, y) \neq(0,0) \\ 0, & \text { if }(x, y)=(0,0)\end{cases}
$$

Determine whether or not f is continuous at $(0,0)$.
10. Let

$$
f(x, y)=\frac{x-y}{x+y}, \quad x+y \neq 0 .
$$

Can f be defined on the line $x+y=0$ so that it is continuous at some point on this line?

