Assignment \#5

Due on Wednesday, October 26, 2011
Read Section 4.3 on Differentiability, pp. 189-195, in Baxandall and Liebek's text. Read Section 3.3 on Linear Approximation and Differentiability, pp. 113-123, in Baxandall and Liebek's text.
Read Section 4.1 on Definition of Differentiability in the class Lecture Notes (pp. 41-43).
Read Section 4.2 on The Derivative in the class Lecture Notes (pp. 43-44).
Read Section 4.3 on Differentiable Scalar Fields in the class Lecture Notes (pp. 44-49).

Do the following problems

1. Let f denote a real valued function defined on some open interval around $a \in \mathbb{R}$. Consider a line of slope m and equation

$$
L(x)=f(a)+m(x-a) \quad \text { for all } x \in \mathbb{R}
$$

Suppose that this line if the best approximation to the function f at a in the sense that

$$
\lim _{x \rightarrow a} \frac{|E(x)|}{|x-a|}=0
$$

where $E(x)=f(x)-L(x)$ for all x in the interval in which f is defined.
Prove that f is differentiable at a, and that $f^{\prime}(a)=m$.
2. Prove that if F is differentiable at u, then it is also continuous at u.

Give an example that shows that the converse of this assertion is not true
3. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be defined by $f(x, y)=\sqrt{|x y|}$ for all $(x, y) \in \mathbb{R}^{2}$. Show that f is not differentiable at $(0,0)$.
4. Is $f(x, y, z)=x \sqrt{y^{2}+z^{2}}$ differentiable at $(0,0,0)$? Prove your assertion.
5. Is the scalar field

$$
f(x, y)= \begin{cases}\frac{x y}{\sqrt{x^{2}+y^{2}}} & \text { if }(x, y) \neq(0,0) \\ 0 & \text { if }(x, y)=(0,0)\end{cases}
$$

continuous at the origin? Is it differentiable at the origin?
6. Let $U=\mathbb{R}^{n} \backslash\{\mathbf{0}\}=\left\{v \in \mathbb{R}^{n} \mid v \neq \mathbf{0}\right\}$ and define $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ by $f(v)=\|v\|$ for all $v \in \mathbb{R}$.
(a) Prove that f is differentiable on U.
(b) Prove that f is not differentiable at the origin in \mathbb{R}^{n}.
7. Let $f: \mathbb{R}^{3} \rightarrow \mathbb{R}$ be give by $f(x, y, z)=x^{2} y+y^{2} z+z^{2} x$, for all $(x, y, z) \in \mathbb{R}^{3}$. Compute all the first partial derivatives of f and verify that

$$
x \frac{\partial f}{\partial x}+y \frac{\partial f}{\partial y}+z \frac{\partial f}{\partial z}=3 f
$$

8. Find the gradient of f for each of the following scalar fields:
(a) $f(x, y, z)=x e^{y z}$,
(b) $f(x, y, z)=1 / \sqrt{x^{2}+y^{2}+z^{2}}, \quad(x, y, z) \neq(0,0,0)$.
9. Let $f(x, y)= \begin{cases}\left(x^{2}+y^{2}\right) \sin \left(\frac{1}{x^{2}+y^{2}}\right), & \text { if }(x, y) \neq(0,0) \text {; } \\ 0, & \text { if }(x, y)=(0,0) .\end{cases}$
(a) Show that the partial derivatives of f with respect to x and y do exist at $(0,0)$, and compute $\frac{\partial f}{\partial x}(0,0)$ and $\frac{\partial f}{\partial y}(0,0)$.
(b) Show that the partial derivatives of f with respect to x and y are not continuous at $(0,0)$.
10. Let f be as in the previous problem. Show that f is differentiable at $(0,0)$, and compute $D f(0,0)$.
