Assignment #6

Due on Wednesday, November 2, 2011

Read Section 3.6 on *The Chain Rule and the Rate of Change along a Path*, pp. 133–136, in Baxandall and Liebek's text.

Read Section 3.7 on *Directional Derivatives*, pp. 138–141, in Baxandall and Liebek's text.

Read Section 3.8 on *The Gradient and Smooth Surfaces*, pp. 142–151, in Baxandall and Liebek's text.

Read Section 4.4 on The Chain Rule, pp. 197–202, in Baxandall and Liebek's text.

Read Section 4.6 on *Derivatives of Compositions* in the class Lecture Notes (pp. 56–60).

Do the following problems

- 1. Let $U = \{(x, y) \in \mathbb{R}^2 \mid x \neq 0\}$ and define $f: U \to \mathbb{R}$ by $f(x, y) = \arctan\left(\frac{y}{x}\right)$, for all $(x, y) \in U$.
 - (a) Compute the gradient of f in U.

(b) Let *I* be an open interval and $\sigma: I \to U$ be a differentiable path given by $\sigma(t) = (x(t), y(t))$ for $t \in I$. Define $\theta: I \to \mathbb{R}$ by $\theta(t) = (f \circ \sigma)(t)$ for all $t \in I$. Apply the Chain Rule to verify that $\theta' = \frac{-yx' + xy'}{x^2 + y^2}$.

(c) Apply the result from part (b) to the path $\sigma: \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \to \mathbb{R}^2$ given by $\sigma(t) = (\cos t, \sin t)$, for $t \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.

2. Suppose that the temperature in a region of space is given by a function $T: \mathbb{R}^3 \to \mathbb{R}$ given by

$$T(x, y, z) = kx^2(y - z),$$
 for all $(x, y, z) \in \mathbb{R}^3$,

and some positive constant k.

An insect flies in the region along a path modeled by a C^1 function $\sigma \colon \mathbb{R} \to \mathbb{R}^3$. Suppose that at time t = 0 the insect is located at (0, 0, 0) and its velocity is $\sigma'(0) = \hat{i} + \hat{j} + 2\hat{k}$. Compute the rate of change of temperature sensed by the insect at time t = 0.

Math 107. Rumbos

3. Let I be an open interval of real numbers and U be an open subset of \mathbb{R}^n . Suppose that $\sigma: I \to \mathbb{R}^n$ is a differentiable path and that $f: U \to \mathbb{R}$ is a differentiable scalar field. Assume also that the image of I under σ , $\sigma(I)$, is contained in U. Suppose also that the derivative of the path σ satisfies

$$\sigma'(t) = -\nabla f(\sigma(t))$$
 for all $t \in I$.

Show that if the gradient of f along the path σ is never zero, then f decreases along the path as t increases.

Suggestion: Use the Chain Rule to compute the derivative of $f(\sigma(t))$.

4. A set $U \subseteq \mathbb{R}^n$ is said to be **path connected** iff for any vectors x and y in U, there exists a differentiable path $\sigma : [0,1] \to \mathbb{R}^n$ such that $\sigma(0) = x$, $\sigma(1) = y$ and $\sigma(t) \in U$ for all $t \in [0,1]$; i.e., any two elements in U can be connected by a differentiable path whose image is entirely contained in U.

Suppose that U is an open, path connected subset of \mathbb{R}^n . Let $f: U \to \mathbb{R}$ be a differentiable scalar field such that $\nabla f(x)$ is the zero vector for all $x \in U$. Prove that f must be constant.

5. Let U be an open subset of \mathbb{R}^n and $f: U \to \mathbb{R}$ be a differentiable scalar filed defined on U. The function f is said to be homogeneous of order k if

$$f(tv) = t^k f(v),$$

for all $v \in U$ and all positive $t \in \mathbb{R}$ such that $tv \in U$.

- (a) Show that the function $f : \mathbb{R}^2 \to \mathbb{R}$ given by f(x, y) = xy, for all $(x, y) \in \mathbb{R}^2$, is homogeneous of order 2.
- (b) Give examples of a scalar field which is homogenous of order 1 and of a scalar field which is homogeneous of order 0.
- (c) Prove Euler's Theorem: If $f: U \to \mathbb{R}$ is differentiable and homogenous of order k, then

$$x_1\frac{\partial f}{\partial x_1}(x) + x_2\frac{\partial f}{\partial x_2}(x) + \dots + x_n\frac{\partial f}{\partial x_n}(x) = kf(x),$$

for all $x = (x_1, x_2, ..., x_n) \in U$.

Suggestion: Let $\sigma \colon \mathbb{R} \to \mathbb{R}^n$ be given by $\sigma(t) = tx$, for all $t \in \mathbb{R}$ and $x = (x_1, x_2, \ldots, x_n) \in U$, and apply the Chain Rule to the composition $f \circ \sigma$.

Math 107. Rumbos

- 6. Let x and y be functions of u and v: x = x(u, v), y = y(u, v), and let f(x, y) be a scalar field. Find $\partial f/\partial u$ and $\partial f/\partial v$ in terms of $\partial f/\partial x, \partial f/\partial y, \partial x/\partial u, \partial x/\partial v, \partial y/\partial u$, and $\partial y/\partial v$.
- 7. For f, x and y as in Problem 6, express $\frac{\partial^2 f}{\partial u^2}$ in terms of the partial derivatives of f with respect to x and y and the partial derivatives of x and y with respect to u. Assume that $\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial y \partial x}$.
- 8. Let $G: \mathbb{R}^n \to \mathbb{R}^m$ and $F: \mathbb{R}^m \to \mathbb{R}^n$ be differentiable functions such that

$$(F \circ G)(x) = x$$
, for all $x \in \mathbb{R}^n$.

Put y = G(x) for all $x = (x_1, x_2, \dots, x_n) \in \mathbb{R}^n$, where $y = (y_1, y_2, \dots, y_m) \in \mathbb{R}^m$. Apply the Chain Rule to show that

$$\frac{\partial f_i}{\partial y_1}\frac{\partial y_1}{\partial x_j} + \frac{\partial f_i}{\partial y_2}\frac{\partial y_2}{\partial x_j} + \dots + \frac{\partial f_i}{\partial y_m}\frac{\partial y_m}{\partial x_j} = \begin{cases} 1 & \text{if } i = j; \\ 0 & \text{if } i \neq j, \end{cases}$$

where $f_1, f_2, \ldots, f_n \colon \mathbb{R}^m \to \mathbb{R}$ are the components of the vector field F.

- 9. Let $f: \mathbb{R}^2 \to \mathbb{R}$ by $f(x,y) = x^2 + y^2 + xy$, for all $(x,y) \in \mathbb{R}^2$, and assume that $x = r \cos \theta$ and $y = r \sin \theta$ for $r \ge 0$ and $\theta \in \mathbb{R}$. Put z = f(x,y) for all $(x,y) \in \mathbb{R}^2$. Use the Chain Rule to compute $\frac{\partial z}{\partial r}$ and $\frac{\partial z}{\partial \theta}$
- 10. Let f be a scalar field defined on (x, y) where $x = r \cos \theta$, $y = r \sin \theta$. Show that

$$\nabla f = \frac{\partial f}{\partial r} \overrightarrow{\mathbf{u}_r} + \frac{1}{r} \frac{\partial f}{\partial \theta} \overrightarrow{\mathbf{u}_{\theta}},$$

where $\overrightarrow{\mathbf{u}_r} = (\cos \theta, \sin \theta)$ and $\overrightarrow{\mathbf{u}_{\theta}} = (-\sin \theta, \cos \theta)$.

Hint: First find $\partial f/\partial r$ and $\partial f/\partial \theta$ in terms of $\partial f/\partial x$ and $\partial f/\partial y$ and then solve for $\partial f/\partial x$ and $\partial f/\partial y$ int terms of $\partial f/\partial r$ and $\partial f/\partial \theta$.