## Assignment \#6

Due on Wednesday, November 2, 2011
Read Section 3.6 on The Chain Rule and the Rate of Change along a Path, pp. 133-136, in Baxandall and Liebek's text.
Read Section 3.7 on Directional Derivatives, pp. 138-141, in Baxandall and Liebek's text.

Read Section 3.8 on The Gradient and Smooth Surfaces, pp. 142-151, in Baxandall and Liebek's text.

Read Section 4.4 on The Chain Rule, pp. 197-202, in Baxandall and Liebek's text.
Read Section 4.6 on Derivatives of Compositions in the class Lecture Notes (pp. 56-60).

Do the following problems

1. Let $U=\left\{(x, y) \in \mathbb{R}^{2} \mid x \neq 0\right\}$ and define $f: U \rightarrow \mathbb{R}$ by $f(x, y)=\arctan \left(\frac{y}{x}\right)$, for all $(x, y) \in U$.
(a) Compute the gradient of $f$ in $U$.
(b) Let $I$ be an open interval and $\sigma: I \rightarrow U$ be a differentiable path given by $\sigma(t)=(x(t), y(t))$ for $t \in I$. Define $\theta: I \rightarrow \mathbb{R}$ by $\theta(t)=(f \circ \sigma)(t)$ for all $t \in I$. Apply the Chain Rule to verify that $\theta^{\prime}=\frac{-y x^{\prime}+x y^{\prime}}{x^{2}+y^{2}}$.
(c) Apply the result from part (b) to the path $\sigma:\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \rightarrow \mathbb{R}^{2}$ given by $\sigma(t)=(\cos t, \sin t)$, for $t \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.
2. Suppose that the temperature in a region of space is given by a function $T: \mathbb{R}^{3} \rightarrow \mathbb{R}$ given by

$$
T(x, y, z)=k x^{2}(y-z), \quad \text { for all }(x, y, z) \in \mathbb{R}^{3}
$$

and some positive constant $k$.
An insect flies in the region along a path modeled by a $C^{1}$ function $\sigma: \mathbb{R} \rightarrow \mathbb{R}^{3}$. Suppose that at time $t=0$ the insect is located at $(0,0,0)$ and its velocity is $\sigma^{\prime}(0)=\widehat{i}+\widehat{j}+2 \widehat{k}$. Compute the rate of change of temperature sensed by the insect at time $t=0$.
3. Let $I$ be an open interval of real numbers and $U$ be an open subset of $\mathbb{R}^{n}$. Suppose that $\sigma: I \rightarrow \mathbb{R}^{n}$ is a differentiable path and that $f: U \rightarrow \mathbb{R}$ is a differentiable scalar field. Assume also that the image of $I$ under $\sigma, \sigma(I)$, is contained in $U$. Suppose also that the derivative of the path $\sigma$ satisfies

$$
\sigma^{\prime}(t)=-\nabla f(\sigma(t)) \quad \text { for all } t \in I
$$

Show that if the gradient of $f$ along the path $\sigma$ is never zero, then $f$ decreases along the path as $t$ increases.

Suggestion: Use the Chain Rule to compute the derivative of $f(\sigma(t))$.
4. A set $U \subseteq \mathbb{R}^{n}$ is said to be path connected iff for any vectors $x$ and $y$ in $U$, there exists a differentiable path $\sigma:[0,1] \rightarrow \mathbb{R}^{n}$ such that $\sigma(0)=x, \sigma(1)=y$ and $\sigma(t) \in U$ for all $t \in[0,1]$; i.e., any two elements in $U$ can be connected by a differentiable path whose image is entirely contained in $U$.
Suppose that $U$ is an open, path connected subset of $\mathbb{R}^{n}$. Let $f: U \rightarrow \mathbb{R}$ be a differentiable scalar field such that $\nabla f(x)$ is the zero vector for all $x \in U$. Prove that $f$ must be constant.
5. Let $U$ be an open subset of $\mathbb{R}^{n}$ and $f: U \rightarrow \mathbb{R}$ be a differentiable scalar filed defined on $U$. The function $f$ is said to be homogeneous of order $k$ if

$$
f(t v)=t^{k} f(v)
$$

for all $v \in U$ and all positive $t \in \mathbb{R}$ such that $t v \in U$.
(a) Show that the function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ given by $f(x, y)=x y$, for all $(x, y) \in$ $\mathbb{R}^{2}$, is homogeneous of order 2 .
(b) Give examples of a scalar field which is homogenous of order 1 and of a scalar field which is homogeneous of order 0 .
(c) Prove Euler's Theorem: If $f: U \rightarrow \mathbb{R}$ is differentiable and homogenous of order $k$, then

$$
x_{1} \frac{\partial f}{\partial x_{1}}(x)+x_{2} \frac{\partial f}{\partial x_{2}}(x)+\cdots+x_{n} \frac{\partial f}{\partial x_{n}}(x)=k f(x),
$$

for all $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in U$.
Suggestion: Let $\sigma: \mathbb{R} \rightarrow \mathbb{R}^{n}$ be given by $\sigma(t)=t x$, for all $t \in \mathbb{R}$ and $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in U$, and apply the Chain Rule to the composition $f \circ \sigma$.
6. Let $x$ and $y$ be functions of $u$ and $v: x=x(u, v), y=y(u, v)$, and let $f(x, y)$ be a scalar field. Find $\partial f / \partial u$ and $\partial f / \partial v$ in terms of $\partial f / \partial x, \partial f / \partial y, \partial x / \partial u$, $\partial x / \partial v, \partial y / \partial u$, and $\partial y / \partial v$.
7. For $f, x$ and $y$ as in Problem 6, express $\frac{\partial^{2} f}{\partial u^{2}}$ in terms of the partial derivatives of $f$ with respect to $x$ and $y$ and the partial derivatives of $x$ and $y$ with respect to $u$. Assume that $\frac{\partial^{2} f}{\partial x \partial y}=\frac{\partial^{2} f}{\partial y \partial x}$.
8. Let $G: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ and $F: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$ be differentiable functions such that

$$
(F \circ G)(x)=x, \quad \text { for all } x \in \mathbb{R}^{n}
$$

Put $y=G(x)$ for all $x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$, where $y=\left(y_{1}, y_{2}, \ldots, y_{m}\right) \in \mathbb{R}^{m}$. Apply the Chain Rule to show that

$$
\frac{\partial f_{i}}{\partial y_{1}} \frac{\partial y_{1}}{\partial x_{j}}+\frac{\partial f_{i}}{\partial y_{2}} \frac{\partial y_{2}}{\partial x_{j}}+\cdots+\frac{\partial f_{i}}{\partial y_{m}} \frac{\partial y_{m}}{\partial x_{j}}= \begin{cases}1 & \text { if } i=j \\ 0 & \text { if } i \neq j\end{cases}
$$

where $f_{1}, f_{2}, \ldots, f_{n}: \mathbb{R}^{m} \rightarrow \mathbb{R}$ are the components of the vector field $F$.
9. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ by $f(x, y)=x^{2}+y^{2}+x y$, for all $(x, y) \in \mathbb{R}^{2}$, and assume that $x=r \cos \theta$ and $y=r \sin \theta$ for $r \geqslant 0$ and $\theta \in \mathbb{R}$. Put $z=f(x, y)$ for all $(x, y) \in \mathbb{R}^{2}$. Use the Chain Rule to compute $\frac{\partial z}{\partial r}$ and $\frac{\partial z}{\partial \theta}$
10. Let $f$ be a scalar field defined on $(x, y)$ where $x=r \cos \theta, y=r \sin \theta$. Show that

$$
\nabla f=\frac{\partial f}{\partial r} \overrightarrow{\mathbf{u}}_{r}+\frac{1}{r} \frac{\partial f}{\partial \theta} \overrightarrow{\mathbf{u}_{\theta}},
$$

where $\overrightarrow{\mathbf{u}_{r}}=(\cos \theta, \sin \theta)$ and $\overrightarrow{\mathbf{u}_{\theta}}=(-\sin \theta, \cos \theta)$.
Hint: First find $\partial f / \partial r$ and $\partial f / \partial \theta$ in terms of $\partial f / \partial x$ and $\partial f / \partial y$ and then solve for $\partial f / \partial x$ and $\partial f / \partial y$ int terms of $\partial f / \partial r$ and $\partial f / \partial \theta$.

