Assignment \#7

Due on Wednesday, November 9, 2011
Read Section 3.6 on The Chain Rule and the Rate of Change along a Path, pp. 133-136, in Baxandall and Liebek's text.
Read Section 3.7 on Directional Derivatives, pp. 138-141, in Baxandall and Liebek's text.
Read Section 3.8 on The Gradient and Smooth Surfaces, pp. 142-151, in Baxandall and Liebek's text.

Read Section 4.4 on The Chain Rule, pp. 197-202, in Baxandall and Liebek's text.
Read Section 4.6 on Derivatives of Compositions in the class Lecture Notes (pp. 56-60).

Do the following problems

1. Let U denote an open subset of \mathbb{R}^{2} and $F: U \rightarrow \mathbb{R}^{2}$ denote a vector field given by

$$
F(x, y)=f(x, y) \widehat{i}+g(x, y) \widehat{j}, \quad \text { for all }(x, y) \in U
$$

where f and g are differentiable scalar fields defined in U. We define the divergence of F, denoted by $\operatorname{div} F$, to be a scalar field, $\operatorname{div} F: U \rightarrow \mathbb{R}$, given by

$$
\begin{equation*}
\operatorname{div} F(x, y)=\frac{\partial f}{\partial x}(x, y)+\frac{\partial g}{\partial y}(x, y), \quad \text { for all }(x, y) \in U \tag{1}
\end{equation*}
$$

In some texts, $\operatorname{div} F$ is denoted by $\nabla \cdot F$; that is, $\operatorname{div} F$ is, formally, the dot product of the vector differential operator

$$
\nabla=\frac{\partial}{\partial x} \widehat{i}+\frac{\partial}{\partial y} \widehat{j}
$$

with the vector field $F=f \widehat{i}+g \widehat{j}$.
Use the definition of divergence in (1) to compute the divergence of the following vector fields
(a) $F(x, y)=\frac{1}{3} x^{3} \widehat{i}+\frac{1}{3} y^{3} \widehat{j}$ for $(x, y) \in \mathbb{R}^{2}$.
(b) $F(x, y)=\left(x^{2}-y^{2}\right) \widehat{i}+2 x y \widehat{j}$ for $(x, y) \in \mathbb{R}^{2}$.
2. Let U denote an open subset of \mathbb{R}^{2} and $f: U \rightarrow \mathbb{R}$ be a scalar field whose second partial derivatives exist in U. Use the definition of ∇f and of divergence in (1) to show that

$$
\begin{equation*}
\operatorname{div} \nabla f=\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}, \tag{2}
\end{equation*}
$$

The expression on the right-hand side of the equation in (2) is called the Laplacian of f and is usually denoted by Δf or $\nabla^{2} f$. We then have that, for a scalar field in U with second partial derivatives,

$$
\Delta f=\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}, \quad \text { or } \quad \nabla^{2} f=\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}, \quad \text { in } U
$$

3. Let $U=\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+y^{2} \neq 0\right.$ and put $r=\sqrt{x^{2}+y^{2}}$ for all $(x, y) \in \mathbb{R}^{2}$. Let $g:(0, \infty) \rightarrow \mathbb{R}$ denote a twice-differentiable real valued function. Define f to be the composition of g with the function $r: \mathbb{R}^{2} \rightarrow \mathbb{R}$; in other words,

$$
f(x, y)=g(r), \quad \text { where } \quad r=\sqrt{x^{2}+y^{2}}, \quad \text { for all }(x, y) \in U .
$$

(a) Use the Chain Rule to compute ∇f in U, and express it in terms of r, $g^{\prime}(r)$ and the vector $\vec{r}=x \widehat{i}+y \widehat{j}$.
(b) Compute the Laplacian, Δf or $\nabla^{2} f$, of f in U, and express it in terms of $r, g^{\prime}(r)$ and $g^{\prime \prime}(r)$.
4. Let U be as in Problem 3. Put $g(t)=\ln t$ for all $t>0$ and let

$$
f(x, y)=\ln \sqrt{x^{2}+y^{2}}, \quad \text { for }(x, y) \in U
$$

Use your result from Problem 3 to compute ∇f and Δf in U. What do you conclude about the Laplacian of f in U ?
5. Let U denote an open subset of \mathbb{R}^{2} and $f: U \rightarrow \mathbb{R}$ and $g: U \rightarrow \mathbb{R}$ be differentiable scalar fields in U. Assume that the second partial derivatives of g exist in U. Derive the identity

$$
\operatorname{div}(f \nabla g)=\nabla f \cdot \nabla g+f \Delta g
$$

where Δg denotes the Laplacian of g in U.
6. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ denote a twice-differentiable real valued function and define

$$
u(x, t)=f(x-c t) \quad \text { for all } \quad(x, t) \in \mathbb{R}^{2}
$$

where c is a real constant. Show that $\frac{\partial^{2} u}{\partial t^{2}}=c^{2} \frac{\partial^{2} u}{\partial x^{2}}$.
7. Let $f(x, y)=4 x-7 y$ for all $(x, y) \in \mathbb{R}^{2}$, and $g(x, y)=2 x^{2}+y^{2}$.
(a) Sketch the graph of the set $C=g^{-1}(1)=\left\{(x, y) \in \mathbb{R}^{2} \mid g(x, y)=1\right\}$.
(b) Show that at the points where f has an extremum on C, the gradient of f is parallel to the gradient of g.
(c) Find largest and the smallest value of f on C.
8. Let D denote an open region in \mathbb{R}^{2} and $f: D \rightarrow \mathbb{R}$ denote a scalar field whose second partial derivatives exist in D. Fix $(x, y) \in D$, and define the scalar map

$$
S(h, k)=f(x+h, y+k)-f(x+h, y)-f(x, y+k)+f(x, y)
$$

where $|h|$ and $|k|$ are sufficiently small.
(a) Apply the Mean Value Theorem to obtain an \bar{x} in the interval $(x, x+h)$, or $(x+h, x)$ (depending on whether h is positive or negative, respectively) such that $S(h, k)=\left(\frac{\partial f}{\partial x}(\bar{x}, y+k)-\frac{\partial f}{\partial x}(\bar{x}, y)\right) h$.
(b) Apply the Mean Value Theorem to obtain a \bar{y} in the interval $(y, y+k)$, or $(y+k, y)$ (depending on whether k is positive or negative, respectively) such that $S(h, k)=\frac{\partial^{2} f}{\partial y \partial x}(\bar{x}, \bar{y}) h k$.
9. (Continuation of Problem 8.)
(c) The function f is said to be of class C^{2} if all its second partial derivatives are continuous on D.
Show that if f is of class C^{2}, then $\lim _{(h, k) \rightarrow(0,0)} \frac{S(h, k)}{h k}=\frac{\partial^{2} f}{\partial y \partial x}(x, y)$.
(d) Deduce that if f is of class C^{2}, then

$$
\frac{\partial^{2} f}{\partial y \partial x}(x, y)=\frac{\partial^{2} f}{\partial x \partial y}(x, y)
$$

that is, the mixed second partial derivatives are the same for C^{2} maps.
10. Let Ω denote an open region in three-dimensional Euclidean space, \mathbb{R}^{3}. Let I denote an open interval. The set

$$
\Omega \times I=\left\{(x, y, z, t) \in \mathbb{R}^{4} \mid(x, y, z) \in \Omega \text { and } t \in I\right\}
$$

is called the Cartesian product of Ω and I. Let $V: \Omega \times I \rightarrow \mathbb{R}^{3}$ denote a vector field defined in Ω which also depends on time $t \in I$. For instance, $V(x, y, z, t)$ denotes the velocity of a fluid element located at $(x, y, z) \in \Omega$ at time t.
Let $\sigma: I \rightarrow \mathbb{R}^{3}$ denote a differentiable path in \mathbb{R}^{3} such that $\sigma(t) \in \Omega$ for all $t \in I$. Furthermore, assume that

$$
\sigma^{\prime}(t)=V(\sigma(t), t), \quad \text { for all } t \in I
$$

that is, the path σ is always tangent to the field V at every point $\sigma(t)$ and time t.
Apply the Chain Rule to verify that, for any differentiable scalar field $f: \Omega \times I \rightarrow$ \mathbb{R}

$$
\frac{d}{d t}[f(\sigma(t), t)]=\frac{\partial f}{\partial t}+V \cdot \nabla f(\sigma(t), t), \quad \text { for all } t \in \mathbb{R}
$$

Suggestion: Write $\sigma(t)=(x(t), y(t), z(t))$, for all $t \in I$, where x, y and z are differentiable functions of $t \in I$.

